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Chapter 1

Introduction

We want to prove some elementary results in Galois theory, concerning in
particular adjunction of roots.

First we shall prove a theorem which gives sufficient and necessary
conditions for the irreducibility of pure polynomials, namely polynomials
of the form Xn − a.

Then we shall use this result to prove that if an algebraic closure of a
field has finite degree > 1 over the field, then it is equal to the field to which
a square root of −1 is added.

These results can be found in the book by Serge Lang, Algebra [1].
Finally, we shall prove a theorem concerning the adjunction of n-th roots

to the field of the rational numbers. We shall show that for each integer n
the extension of Q through the n-th roots of k distinct primes has degree nk

over Q.
This theorem is due to Ian Richards, and it is presented in the article An

application of Galois theory to elementary arithmetic, [2].

In the first chapter we consider the pure polynomial

Xn − a ∈ K[X]

with coefficients in a field K, and study when it is irreducible.
Setting a = 1, we get the polynomial Xn − 1 ∈ K[X]. Its roots, which

are the solutions of the equation

Xn = 1,
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are called n-th roots of unity. They may or may not lie in the field K.
If an n-th root of unity has order n, then it is called primitive.
The roots of the pure polynomial Xn − a have much to do with the n-th

roots of unity. Let α be a root of Xn − a, i.e. αn = a, and let ε be a n-th
root of unity, i.e. εn = 1; then

(αε)n = αnεn = a · 1 = a.

If the polynomial Xn − a is irreducible over the field K, none of its roots
lies in the field K. Consider the vector space

{a + bα : a, b ∈ K},

constructed by adjunction of the root α to the field K. It is easy to note
that its dimension over K is n, because this is the smallest integer s > 1 such
that αs ∈ K. In this case we say that the degree of the field extension K(α)
over K is n.

The Theorem proved in the first chapter claims that the pure polynomial
Xn−a is irreducible over the field K if and only if the following two conditions
are verified:

• for any prime p dividing n, we have a �∈ Kp;

• if 4 divides n, then a �∈ −4K4.

It is easy to prove that these conditions are sufficient, whereas the proof
that they are also necessary involves some Galois theory. In the proof
induction is used and the Theorem is reduced to the case where n is a prime
power, distinguishing the cases where the characteristic of the field is 0 or a
prime number.

In the same chapter a corollary, due to E. Artin, is also proved, in which
the adjunction of a n-th root to a field is considered.

The algebraic closure of a field K is “the” smallest field which contains
K and the roots of every polynomial whose coefficients lie in K.

The corollary claims that if the algebraic closure of a field K has finite
degree greater than 1, then it coincides with the field obtained by adjunction
of a square root of −1 to the field K. Furthermore, in this case the
characteristic of the field is 0.
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In the first part we studied the adjunction of one n-th root of an element
a to a field K.

In the second chapter the field K = Q of the rational numbers is
considered, and the adjunction of n-th roots of k distinct primes to Q is
studied.

I. Richards proved that, for any integer n > 1, the adjunction to Q of the
n-th roots of k distinct primes n

√
p1, . . . , n

√
pk, gives a field extension, whose

degree is nk. In other words, the powers from 1 to n − 1 of the n-th roots
that we are considering are linearly independent one of another. Thus the
dimension of the vector space

Q( n
√

p1, . . . , n
√

pk)

over Q is nk.
This result is very easy for n = 2, but the general case is an elementary

consequence of Galois theory. In the proof the cases where n is odd or even
are considered separately, and the induction principle is used.



Chapter 2

Introduzione

In questo lavoro vengono presentati alcuni risultati elementari della teoria di
Galois, che riguardano in particolare l’aggiunzione di radici.

Innanzitutto viene enunciato e dimostrato un teorema che presenta
condizioni necessarie e sufficienti per avere l’irriducibilità dei polinomi puri,
cioè della forma Xn − a.

Questo risultato sarà usato per provare che se la chiusura algebrica di un
campo K ha grado finito e maggiore di 1 su K, allora essa coincide con il
campo che si ottiene aggiungendo a K una radice quadrata di −1.

Questi risultati si trovano nel libro di Lang, Algebra [1].
Infine, verrà dimostrato un teorema che tratta dell’aggiunzione di radici

n-esime al campo dei razionali. Verrà provato che per ogni intero n maggiore
di 1, estendendo Q con le radici n-esime di k primi distinti, si ottiene uno
spazio vettoriale di dimensione nk su Q.

Questo teorema è stato dimostrato da Ian Richards, nell’articolo An
application of Galois theory to elementary arithmetic, [2].

Nel primo capitolo viene caratterizzata l’irriducibilità del polinomio puro

Xn − a ∈ K[X]

a coefficienti in un campo K.
Ponendo a = 1, si ottiene il polinomio Xn − 1 ∈ K[X], le cui radici,

ovvero le soluzioni dell’equazione

Xn = 1
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sono dette radici n-esime dell’unità. Esse possono appartenere o meno al
campo K.

Una radice n-esima di periodo n viene detta primitiva.
Le radici del polinomio puro Xn − a sono strettamente legate alle radici

n-esime dell’unità: se α è una radice di Xn − a, cioè αn = a, e ε una radice
dell’unità, cioè εn = 1, si ha

(αε)n = αnεn = a · 1 = a.

Se il polinomio Xn − a è irriducibile sul campo K, ogni sua radice non
appartiene a K. Si verifica facilmente che lo spazio vettoriale ottenuto
dall’aggiunzione della radice α al campo K, ovvero lo spazio dato da

{a + bα : a, b ∈ K}

ha dimensione n su K, poichè il minimo intero s > 1 tale che αs ∈ K è n.
In questo caso si dice che l’estensione K(α) su K ha grado n.

Il teorema enunciato e dimostrato nel primo capitolo afferma che il
polinomio Xn −a è irriducibile sul campo K se e solo se vengono soddisfatte
le seguenti due condizioni:

• per ogni primo p che divide n, si deve avere a �∈ Kp;

• se 4 divide n, allora deve essere a �∈ −4K4.

Si dimostra facilmente che queste condizioni sono sufficienti, mentre per
provare che sono necessarie, ci si riconduce al caso in cui n sia potenza di
un primo, si usa il principio di induzione e si distinguono i casi in cui la
caratteristica del campo è 0 o un primo.

Nello stesso capitolo viene inoltre esposto un corollario, dovuto a E. Artin,
che tratta l’aggiunzione di una radice n-esima ad un campo K.

La chiusura algebrica di un campo K è “il” più piccolo campo, unico a
meno di isomorfismi, che contiene K e le radici di ogni polinomio a coefficienti
nel campo K.

Il corollario presentato afferma che se la chiusura algebrica di un campo
K ha grado finito e maggiore di 1, allora essa coincide con l’estensione del
campo mediante una radice quadrata di −1. Inoltre in questo caso il campo
ha caratteristica 0, ovvero contiene una copia isomorfa di Q.
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Nella prima parte si è studiata l’aggiunzione di una radice n-esima di un
intero a ad un campo K.

Nel secondo capitolo viene considerato il caso K = Q, il campo dei
razionali, a cui si aggiungono le radici n-esime di k primi distinti.

I. Richards dimostra che, fissato un numero naturale n > 1, se si
aggiungono al campo dei razionali Q le radici n-esime di numeri primi distinti
n
√

p1, . . . , n
√

pk, si ottiene un’estensione di dimensione nk. In altre parole le
potenze fino alla (n−1)-esima delle radici considerate sono tutte linearmente
indipendenti tra loro. Dunque

Q( n
√

p1, . . . , n
√

pk),

visto come spazio vettoriale su Q, ha dimensione nk.
Questo risultato si ottiene facilmente per n = 2, mentre per interi

più grandi è una conseguenza elementare della teoria di Galois. Nella
dimostrazione vengono distinti i casi in cui n è pari o dispari, e si procede
per induzione.

Una facile applicazione di questo teorema a espressioni quali

4
√

3 +
5
√

4 +
6
√

72

porta a concludere che esse non hanno mai valori razionali, a meno che i
termini non si semplifichino in modo ovvio. Nell’esempio, ponendo n = 60 e
considerando i primi 2, 3, dal teorema sappiamo che una base di Q( 60

√
2, 60

√
3)

è {
60
√

2a3b : 0 ≤ a, b < 60
}

.

Ognuno dei termini nella nostra espressione ha questa forma, dunque essi
sono linearmente indipendenti su Q e quindi non possono semplificarsi.
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The pure polynomial Xn − a

3.1 The result

In this chapter a theorem will be proved, which says when a pure polynomial
is irreducible over a field.

Theorem 3.1.1. Let K be a field, and n ≥ 2 an integer. Let a ∈ K, a �= 0.
Then Xn − a is irreducible in K[X], if and only if:

1. for all primes p such that p | n we have a �∈ Kp and

2. if 4 | n, then a �∈ −4K4.

Proof. We will organise the proof as follows: first, we prove that the
conditions 1 and 2 are sufficient to let our polynomial be irreducible; then
we prove that they are also necessary.

3.2 Proof that the conditions are sufficient

In this part of the proof, we shall reduce the theorem to the case when n is
a prime power, proceeding by induction.

We proceed as follows:
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1. we prove that if the theorem holds for prime powers n = pr, then it is
true for each integer n > 0;

2. we prove the result for n = p prime; we distinguish the cases char K = p
and char K �= p;

3. we prove our theorem for prime powers n = pr, where p is a prime;
again we distinguish the cases char K = p and char K �= p. In this
latter case, we shall make another distinction, namely, letting α be
root of Xp − a, we investigate what happens if α is or is not a p-th
power in K(α).

3.2.1 If the theorem holds for prime powers, then it is

true for each positive integer

Assume that the theorem is shown for prime powers, i.e. the polynomial
Xpr − a over a field K is irreducible for each integer r ≥ 1.

Write n = prm where p is an odd prime relative prime to m.
By induction, we can assume that Xm − a is irreducible over K. In fact

we can consider the prime factorization of m, and

m = pr1
1︸︷︷︸

p
r(1)
(1)

pr2
2 . . . prk

k 2r0︸ ︷︷ ︸
m(1)

Now we consider m(1) = pr2
2 . . . prk

k 2r0, and

m(1) = pr2
2︸︷︷︸

p
r(2)
(2)

pr2
2 . . . prk

k 2r0︸ ︷︷ ︸
m(2)

And so on, till
m(k−1) = prk

k︸︷︷︸
p

r(k)
(k)

2r0︸︷︷︸
m(k)

and the last step
m(k) = 2r0︸︷︷︸

p
r(k+1)
(k+1)
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where m(k+1) = 1. The induction basis is verified, because Xm(k+1)−a = X−a
is irreducible.

Let

Xm − a =
m∏

ν=1

(X − αν) ∈ K[X]

be the factorization of Xm − a in an algebraic closure K of the field K, and
let α = α1; then αm = a.

Substituting Xpr
for X we have:

Xn − a = Xprm − a =

m∏
ν=1

(Xpr − αν).

Claim: α is not a p-th power in K(α).

Suppose it is. Then there is an element β ∈ K(α) such that α = βp.
Let N = NK(α)|K be the norm from K(α) to K.
Xm − a = mK,α is the minimum polynomial of α over K, because it is

irreducible, monic and α is a root.
Then:

(−1)m(−a) = N(α) = N(βp) = N(β)p

since N : K(α)∗ → K∗ is a homomorphism of groups.
If m is odd, then

a = N(β)p ∈ Kp.

If m is even, then p is odd, because they are coprime, and

a = −N(β)p = N(−β)p ∈ Kp.

In both cases the element a is p-th power in K, which is a contradiction
to Assumption 1.

Hence α is not a p-th power in K(α).

We assumed that the theorem holds for prime powers; then, since p is
odd and α �∈ K(α)p, the polynomial Xpr − α is irreducible over K(α).

Let A be a root of the polynomial Xpr − α ∈ K(α). Then

K ⊂ K(α) ⊂ K(A)
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K

K(α)

m

K(A)

pr

Figure 3.1: The tower of fields considered in the proof.

is a tower of fields, with:

[K(α) : K] = deg(mK,α) = deg(Xm − a) = m,

because Xm − a, irreducible over K, is the minimum polynomial of α over
K and has degree m. Furthermore

[K(A) : K(α)] = deg(mK(α),A) = deg(Xpr − α) = pr,

because A is a root of Xpr − α, irreducible over K(α), and so this is the
minimum polynomial of A over K(α).

By multiplicativity of degrees (Proposition A.1.1), it is

[K(A) : K] = [K(A) : K(α)][K(α) : K] = prm = n

Then deg(mK,A) = [K(A) : K] = n. A is root of Xpr − α, and this
polynomial divides Xn − a, hence A is root of the polynom Xn − a, which
has degree n. Thus Xn − a is the minimum polynomial of A over K, hence
irreducible.

3.2.2 Proof for n prime

Now we want to prove the theorem for prime powers, proceeding by induction
over r. For the rest of the proof let n = pr, where p is prime.
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The induction starts with r = 1, i.e. n = p a prime.
Let α be a root of f = Xp − a ∈ K[X].

If the characteristic of K is char(K) = p, then

Xp − a = Xp − αp = (X − α)p ∈ K[X].

Assume f reducible. Then there is a proper divisor g ∈ K[X] of f , i.e.

g = (X − α)s ∈ K[X],

where 1 ≤ s ≤ p − 1. Then

g = Xs − sαXs−1 + · · ·+ (−1)sαs ∈ K[X].

In particular sα ∈ K. Since s < p, we have s ·1K �= 0K , and α =
(s · 1K)α

s · 1K
∈

K.
But a = αp, thus a ∈ Kp, which contradicts Assumption 1.
Then f is irreducible over K when char(K) = p.

When char(K) �= p, we have char(K) � p, because p is prime. Hence
there is (in an algebraic closure of K) a primitive p-th root of unity ε over
K.

α, αε, αε2, . . . , αεp−1 are distinct roots of f , because ε has order p, and
these are all the roots, because f has degree p. Then

f =

p−1∏
i=0

(X − εiα) ∈ K[X].

Assume that f is reducible.
Then there is a proper divisor g of f , which means there is an integer

1 ≤ s ≤ p − 1 such that

g =
s∏

i=1

(
X − εtiα

) ∈ K,

where 1 ≤ ti ≤ p − 1 for each ti and the elements ti are all distinct.
In particular the constant term of g is in the field K,

εkαs ∈ K,
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for some 1 ≤ k ≤ p.
Then

Kp � (εkαs)p = εpkαps = as,

i.e. there is b ∈ K such that bp = as.
Since p is prime and s < p, gcd(s, p) = 1. Using the euclidean algorithm

we can find x, y ∈ Z such that xp + ys = 1. It follows that

bpy = asy = a1−xp = aa−xp;

hence we obtain
a = bpyaxp = (byax)p ∈ Kp.

This is a contradiction to Assumption 1, hence is f irreducible over K.

3.2.3 Proof for prime powers

Now we shall prove the induction step. Let n = pr, with p prime and r ≥ 2.
By induction, we may assume that the theorem is proved for each

polynomial Xps −a, where s < r; we must show the result for the polynomial
Xpr − a.

• Case 1: Assume that char(K) = p.

α is a root of Xp − a, hence αp = a, and

(X − α)p = Xp − αp = Xp − a ∈ K[X]

is the minumum polynomial of α over K.

It follows that
Xpr − a = (Xpr−1 − α)p ∈ K[X].

Claim: α is not a p-th power in K(α).

Assume that α is a p-th power in K(α); then there exists an element
β ∈ K(α) such that βp = α.

Let N = NK(α)|K be the norm from K(α) to K. The minimum
polynomial of α over K is Xp − a, because it is irreducible and α
is one of its roots. Thus

(−1)p(−a) = N(α) = N(βp) = N(β)p.
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If p is odd, a = N(β)p ∈ Kp, contradiction to Assumption 1.

If p = 2, let b = N(β) ∈ K. Hence b2 = −a. Since α2 = a, α2 = −b2,

0 = α2 + b2 = (α + b)2.

Therefore α = −b; but α �∈ K (because Xp − α is irreducible), and
−b ∈ K, contradiction.

Thus the claim is proved.

The polynomial Xpr−1 − α ∈ K(α)[X] is irreducible over K(α) by
induction hypothesis: its degree is less than pr and we can apply the
theorem because we have just proved condition 1, and

α �∈ −4K(α)4 = 0,

so condition 2 is also satisfied.

Hence the polynomial Xpr − a = (Xpr−1 −α)p is irreducible over K, by
unique factorization.

• Case 2: char(K) �= p

Let

Xp − a =

p∏
ν=1

(X − αν)

be the factorization of Xp − a. Then substituting Xpr
for X we get

Xpr − a =

p∏
ν=1

(
Xpr−1 − αν

)
;

let α = α1.

Now we distinguish the cases where α is or is not a p-th power in K(α).

Suppose that α is not a p-th power in K(α), and let A be a root of
Xpr−1 − α.
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If p is odd, by induction hypothesis we can apply the theorem to the
polynomial Xpr−1 −α, because α �∈ K(α)p and 4 � pr−1, since p is odd.
Thus Xpr−1 − α is irreducible over K(α). Then

[K(A) : K(α)] = deg(mK(α),A) = deg(Xpr−1 − α) = pr−1

It is Xp − a = mK,α (because it is irreducible and α is a root); then by
multiplicativity of degrees:

deg(mK,A) = [K(A) : K] =

= [K(A) : K(α)][K(α) : K] =

= pr−1p =

= pr.

A is a root of Xpr−1 − α and this polynomial divides Xpr − a. Hence
Xpr −a is the minimum polynomial of A over K. Hence it it irreducible
over K.

Consider now the case where p = 2.

Assume that α = −4β4 for an element β ∈ K(α).

Let N = NK(α)|K be the norm; then X2 − a = mK,α and:

−a = (−1)2(−a) = N(α) = N(−4β4) = 16N(β)4

Let b = 4N(β)2 ∈ K. We have

(X + α)(X − α) = X2 − a = X2 + b2 = (X + ib)(X − ib)

Comparing the two sides, one gets ±ib = α ∈ K(α).

But b ∈ K, hence K(α) = K(i), and α = (2iβ2)2 ∈ K(α)2,
contradiction. It follows that α �∈ −4K(α)4.

Then, since by induction X2r−1 − α is irreducible over K(α), it follows
that X2r − a is irreducible over K.

Now, suppose that α is a p-th power in K(α). Then there is an element
β ∈ K(α) such that α = βp.
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Let N = NK(α)|K be the norm. Since Xp − a = mK,α, it follows that:

(−1)p(−a) = N(α) = N(βp) = N(β)p.

If p is odd, then a = N(β)p ∈ Kp, contradiction to Assumption 1.

If p = 2, then −a = N(β)2 ∈ K2. Let b = ±N(β), then −a = b2 for an
element b ∈ K. By Assumption 1, a is not a square in K. Since

K2 �� a = (−1)(−a)

and
−a ∈ K2,

it follows that −1 is not a square in K.

Let i2 = −1 �∈ K2. Over K(i) it is:

X2r − a = X2r

+ b2 = (X2r−1

+ ib)(X2r−1 − ib),

where both factors have degree 2r−1.

If X2r−1 ± ib is irreducible over K(i), we have finished, because in this
case X2r

+ b is also irreducible over K, by unique factorization.

Hence, supppose that X2r−1 ± ib is reducible over K(i), then, by
induction-assumption, ±ib is a square in K(i) or ±ib ∈ −4K(i)4. In the
latter case, there is a c ∈ K(i) such that ±ib = −4c4 = (2ic2)2 ∈ K(i)2.

Then in both cases ±ib ∈ K(i)2, say

±ib = (c + di)2 = c2 + 2cdi− d2,

where c, d ∈ K. Then c2 = d2, so c = ±d, and ±ib = 2cdi = ±2c2i.
Thus:

a = −b2 = (±ib)2 = (±2c2i)2 = −4c4,

and a ∈ −4K4, contradiction to Assumption 2.

It follows that the polynomials X2r−1±ib must be irreducible over K(i),
and X2r

+ a irreducible over K, by unique factorization.



CHAPTER 3. The pure polynomial Xn − a 17

3.3 Proof that the conditions are necessary

If Assumption 1 does not hold, then there are a prime p and an integer m
such that n = mp. Furthermore, a = bp for some b ∈ K. Thus

Xm − b | Xmp − bp = Xn − a,

so our polynomial is reducible.

If condition 2 is not verified, then n = 4m for some integer m and there
is an element b ∈ K such that a = −4b4. Then:

Xn − a = X4m + 4b4 =

=
(
X2m − 2ib2

) (
X2m + 2ib2

)
=

= (Xm ± (b + ib)) (Xm ± (b − ib)) =

= ((Xm + b) ± ib) ((Xm − b) ± ib) =

=
(
X2m + 2bXm + 2b2

) (
X2m − 2bXm + 2b2

)
,

where both factors lie in the polynomial ring K[X]; hence the polynomial
Xn − a is reducible.

3.4 Some consequences of the theorem

Corollary 3.4.1. Let K be a field and 0 �= a ∈ K. Assume that a is not a
p-th power for some prime p. If the characteristic is p or if p is odd, then
for any integer r ≥ 1 the polynomial Xpr − a is irreducible over K.

Proof. The assertion is weaker than Theorem 3.1.1: we consider the
polynomial Xpr −a ∈ K[X]. The first condition of Theorem 3.1.1 is fulfilled,
since the only prime number which divides pr is p and by assumption a is
not a p-th power. The second condition is also satisfied, because:

• if p is odd, 4 does not divide pr;

• if p = 2 and the characteristic is 2, then −4K4 = 0 �� a.
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Corollary 3.4.2 (Artin). Let K be a field and assume that the algebraic
closure K of K is of finite degree > 1 over K. Let i denote a square root of
−1. Then K = K(i) and K has characteristic 0.

Proof. We note that the extension K | K is normal, because the algebraic
closure of a field contains the roots of all irreducible polynomials over K.

Assume that K | K is not separable. It follows that char K = p > 0. So K
must be purely inseparable over some subfield of degree > 1, by Proposition
A.2.3. Thus there is a subfield E, K ⊆ E ⊆ K, such that E is separable
over K and K is purely inseparable over E. Hence by Definition A.2.2 there
is an element a ∈ E such that Xp − a is irreducible over E.

By Corollary 3.4.1, for each integer r ≥ 1, the polynomial Xpr − a is
irreducible over E. Then∏

r≥1

pr divides
[
K : E

]
,

where the product is not finite. This means that the degree[
K : K

]
=

[
K : E

]
[E : K]

is not finite, contradiction.

Therefore we assume that K is separable over K, and since normal, also
Galois.

Let K1 = K(i), where i2 = −1. The extension K over K1 is separable by
Proposition A.1.2, and normal because K is an algebraic closure of K1.

Hence K is Galois over K1. Let G be its Galois group.

Assume there is a prime p dividing the order of G. Let H be a subgroup
of G with order p and let F be its fixed field. Then K has degree p over F .

If char K = p, we show that there is an irreducible polynomial over K,
which is a contradiction because this field is algebraically closed.

By the linear independence of characters (Proposition A.3.1), there is an
element β ∈ K � F such that TrK|F (β) �= 0. Then

TrK|F (βp − β) =
∑

σ

(βp)σ −
∑

σ

βσ =
∑

σ

(βp − β)σ = 0,
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since βp − β = ℘β ∈ F .
By Hilbert’s Theorem 90 (additive form, Theorem A.5.2), there exists an

element α ∈ K such that ασ − α = βp − β.
Consider now the polynomial Xp − X − α ∈ K[X].
Its roots lie in K, since this field is algebraically closed. Consider a root,

say γ ∈ K; then α = γp − γ. We have

βp − β = ασ − α = γσp − γσ − γp + γ = (γσ − γ)p − (γσ − γ) .

Then
℘β = ℘ (γσ − γ)

and, since ℘ is an additive homomorphism (by Lemma A.5.3),

℘ (β − (γσ − γ)) = 0.

The kernel of ℘ is Fp (Lemma A.5.3), so

β − (γσ − γ) = k ∈ Fp,

β = γσ − γ + k.

Thus
TrK|F (β) = TrK|F (γσ − γ) + TrK|F (k) = 0,

which is a contradiction.

Hence, we may assume char K �= p. The p-th primitive roots of unity are
roots of a polynomial of degree ≤ p − 1, because they are roots of

Xp − 1

X − 1
= Xp−1 + · · ·+ X + 1 ∈ K[X].

Let ε ∈ K be a primitive root of unity. Then

[K(ε) : F ] = deg(mF,ε) ≤ p − 1.

On the other hand, by multiplicativity of degrees, it is[
K : K(ε)

]
[K(ε) : F ] =

[
K : F

]
= p.

It follows that [K(ε) : F ] = 1, i.e. K(ε) = F .
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By Theorem A.5.1, part 1, K is splitting field of a polynomial Xp − a for
some a ∈ F .

We claim that the polynomial Xp2 − a is reducible over F . Suppose not;
then there is β ∈ K such that βp2

= a and Xp2 − a = mF,β. Then

p2 = deg(mF,β) = [F (β) : F ] | [
K : F

]
= p,

which is a contradiction.

By Theorem 3.1.1 one of the following must hold:

• a ∈ F p, or

• 4 | p2 and a ∈ −4F 4.

The first case yields a contradiction, because K is the splitting field of
Xp − a ∈ F [X] and

[
K : F

]
= p > 1 means that a �∈ F p.

Hence p = 2 and a = −4b4 for some b ∈ F .
Then

[
K : F

]
= 2, and

X2 − a = (X + a
1
2 )(X − a

1
2 ),

where ±α = a
1
2 ∈ K.

K = F
(
a

1
2

)
= F

(
(−4b4)

1
2

)
= F

(
2ib2

)
= F (i).

Since i ∈ K1 ⊆ F , we get

K = F (i) = F ,

which is a contradiction, because
[
K : F

]
= p > 1.

Therefore the Galois group of K over K1 is 1, and K = K(i).

It remains to prove that char(K) = 0.
First of all, note that in K a sum of squares is a square. To show this,

let x + iy ∈ K = K(i), where x, y ∈ K. This is a square in K, because this
field is algebraically closed. Let

x + iy = (u + iv)2



CHAPTER 3. The pure polynomial Xn − a 21

for some u, v ∈ K.
We know

x + iy = (u + iv)2 = u2 − v2 + 2iv,

then x = u2 − v2 and y = 2v. Thus

(u − iv)2 = u2 − v2 − 2iv = x − iy.

Then

(u2 + v2)2 = ((u + iv)(u − iv))2 =

= (u + iv)2(u − iv)2 =

= (x + iy)(x − iy) =

= x2 + y2

Now, x and y were arbitrary, and the sum of their squares is a square.
It follows that every finite sum of squares is a square in K.

Assume that char(K) > 0. Then

−1 = 1 + · · · + 1︸ ︷︷ ︸
char(K) times

is a finite sum, and since 1 is a square, also −1 is a square in K. This means
that there is an element c ∈ K such that c2 = −1.

K = K(i) = K(
√−1) = K(

√
c2) = K(c) = K.

But by assumption
[
K : K

]
> 1, contradiction.

It follows that char(K) = 0.



Chapter 4

Adjunction of n-th roots of
primes

4.1 The result

In this chapter we show a result due to Richards, which can be found in [2].
Consider linear combinations of radicals, for example 3

√
2 + 4

√
3 − 5

√
12.

We will prove that such expressions are irrational whenever their terms do
not cancel out in an obvious manner.

Theorem 4.1.1. Let n > 1 be an integer, p1, p2, . . . , pk distinct positive

primes, and p
1
n
i the positive n-th root of pi (i = 1, . . . , k). Then the field

Q(p
1
n
1 , . . . , p

1
n

k ) has degree nk over Q.

Theorem 4.1.1 is equivalent to the following:

Theorem 4.1.2. Let {ei} denote the set of nk radicals

n

√
pm1

1 · · · pmk
k , where 0 ≤ mi < n, 1 ≤ i ≤ k.

Then the set {ei} is linearly independent over Q.

To prove the equivalence, it is sufficient to note that the set {ei} spans

the vector space Q(p
1
n
1 , . . . , p

1
n
k ).
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Theorem 4.1.2 is due to Besicovitch, [6]. His proof is based on a Euclidean
algorithm in several variables.

For the rest of the chapter, let ε denote a primitive n-th root of unity,
and R, E, F the following extension fields of Q:

R = Q(ε),

E = Q(p
1/n
1 , . . . , p

1/n
k ),

F = R(p
1/n
1 , . . . , p

1/n
k ).

4.2 Some examples

Consider the expression
3
√

2 +
4
√

3 − 5
√

12.

Set n = 60, k = 2 and p1 = 2, p2 = 3.
By Theorem 4.1.1, the degree of Q( 60

√
2, 60

√
3) over Q is 3600. A basis of

this extension is {
60
√

2a3b : 0 ≤ a, b < 60
}

.

The terms 3
√

2 =
60
√

220, 4
√

3 =
60
√

315 and 5
√

12 =
60
√

1212 =
60
√

224312, lie all
in this basis. Hence they are linearly independent, and the equation

3
√

2 +
4
√

3 − 5
√

12 = q,

where q is a rational number, is impossible, because also 1 is in the basis, so
the terms are linearly independent.

Similarly, we can show that
√

5 does not belong to the field generated
over Q by all the real n-th roots of 2 and 3.

Set k = 3 and pi = {2, 3, 5} and leave n ∈ N undetermined. A basis of
the extension Q( n

√
2, n

√
3, n

√
5) over Q is{

n
√

2a3b5c : 0 ≤ a, b, c < n
}

.

As a consequence, for each 0 ≤ a, b < n, the term
n
√

2a3b is linearly
independent of

√
5, since these terms belong to the same basis.
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Note that the theorem fails if Q is replaced by the field R generated by
the n-th roots of unity.

For example set n = 5 and let ε be a primitive 5-th root of unity, say

1

4

(√
5 − 1 + i

√
2

√
5 +

√
5

)

Set n = 10. Since ε is also a 10-th root of unity,
√

5 is contained in the field
R generated by the 10-th roots of unity.

Then the field R( 10
√

5) is the field R, so its degree over R is 1 and not 10,
as the theorem would claim.

4.3 The proof of the theorem

We note that if [F : R] = nk, then also [E : Q] = nk, because the linear
independence of the {ei} over R implies their independence over Q (here we
are using Theorem 4.1.2).

First we prove an elementary result, and then we distinguish two cases,
namely when n is odd or even.

Lemma 4.3.1. Let L be an extension field of R = Q(ε) and a ∈ L. Then
either:

1. the polynomial Xn − a is irreducible over L, or

2. there exists an integer m > 1 such that m | n and m
√

a ∈ L.

Proof. In a suitable extension field we can write

Xn − a =
(
X − ε n

√
a
) (

X − ε2 n
√

a
)
. . .

(
X − n

√
a
)

If our polynomial Xn − a is reducible over L, any of its nontrivial factors is
of the form

s∏
i=1

(
X − εti n

√
a
) ∈ L[X]
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for an integer 1 ≤ s < n, where the ti ∈ Z are all distinct modulo n. In
particular the constant term b = εras/n, for some integer r, lies in L.

Let m =
n

gcd(s, n)
. Choose integers u, v such that us + vn = gcd(s, n).

Then
L � buav = εrua

s
n

uav = εrua
1
n

gcd(s,n) = εrua
1
m

Condition 2 is fulfilled: m =
n

gcd(s, n)
divides n and 1 ≤ m ≤ n; m = 1

if and only if gcd(s, n) = n, which is not the case, because 0 < s < n.

4.3.1 Proof for the case where n is odd

Lemma 4.3.2. Let n, m > 0 be odd integers and 0 < a ∈ Q. No irrational
number of the form m

√
a lies in any of the fields Q(ε) generated by n-th roots

of unity.

Proof. Without loss of generality, we can assume that m is prime. In fact, if

m = pq, with p an odd prime and q odd, then m
√

a = ( p
√

a)
1
q . Let β = p

√
a �∈

Q(ε). Assume that q
√

β ∈ Q(ε), then β =
(

q
√

β
)q ∈ Q(ε), contradiction.

Let εm denote a primitive m-th root of unity.
By Theorem 3.1.1 the polynomial Xm − a is irreducible over Q and over

Q(εm), so it is the minimum polynomial of m
√

a over both fields. Then

[Q( m
√

a) : Q] = deg(mQ, m
√

a) = deg(Xm − a) = m.

On the other side, by Corollary A.4.5 we know that

[Q(εm) : Q] = m − 1,

so we conclude that m
√

a �∈ Q(εm).
Then

[Q( m
√

a, εm) : Q] = [Q( m
√

a, εm) : Q(εm)][Q(εm) : Q] =

= deg(Xm − a) · (m − 1) =

= m(m − 1).
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Q( m
√

a, εm) | Q is a Galois extension and its Galois group G has order
m(m − 1).

The automorphisms in G take roots of Xm−a and of Xm−1
X−1

in roots, then
all the “plausible” automorphisms are actually in G.

Consider the following automorphisms:

ϕ1 :

{
m
√

a 
→ εm
m
√

a

εm 
→ εm

ϕ2 :

{
m
√

a 
→ m
√

a

εm 
→ ε2
m

Compose them in both the possible ways, and obtain:

ϕ1ϕ2(
m
√

a) = εm
m
√

a

and
ϕ2ϕ1(

m
√

a) = ε2
m

m
√

a

This proves that G is not abelian.

But Q(εn) | Q is an abelian extension for all positive integers n, by
Proposition A.4.2. Then for each n ∈ N,

Q( m
√

a, εm) �⊆ Q(εn).

Now, if m
√

a ∈ Q(εm), then m
√

a ∈ Q(εmn), since εn ∈ Q(εmn).
Also εm ∈ Q(εmn), then m

√
a, εm ∈ Q(εmn), and

Q( m
√

a, εm) ⊆ Q(εmn),

which is not the case.
Then our lemma is proved.

Remark. The assertion holds also for 4
√

a, where 0 < a ∈ Q, if
√

a is
irrational.
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In fact, if
√

a is not rational, then the polynomial X4 − a is irreducible
over Q, by Theorem 3.1.1, because a �∈ Q2 and a �∈ −4Q4, since a > 0. The
rest of the proof is the same.

Lemma 4.3.3. Assume that Theorems 4.1.1 and 4.1.2 hold for some fixed k
with Q replaced by R, i.e. the field R( n

√
p1, . . . , n

√
pk) has degree nk over R,

i.e. the set {ei} is linearly independent over R.
Take a prime pk+1 distinct from the primes p1, . . . , pk. Then, for any integer
m > 1 which divides n, the equation

m
√

pk+1 =

nk∑
i=1

ciei, ci ∈ R (4.3.1)

is impossible.

Proof. Assume that the equation 4.3.1 is satisfied for some ci ∈ R. We
distinguish two cases; both lead to a contradiction.

Suppose that there is only one ci �= 0. Then

m
√

pk+1 = cjej = cj
n

√
pm1

1 , . . . , pmk
k , (4.3.2)

for some cj ∈ R.
m is odd, since it divides n, which is odd.
We claim that m

√
pk+1 �∈ Q. Otherwise there would exist coprime integers

q, r, such that m
√

pk+1 =
q

r
; then rmpk+1 = qm. This is a contradiction,

because r and q are coprime and m > 1.
So we can apply Lemma 4.3.2: we obtain m

√
pk+1 �∈ Q(ε) = R.

Raising this equality to the power n we obtain:

p
n
m
k+1 = cn

j pm1
1 , . . . , pmk

k

Therefore m1 = · · · = mk = 0, cj = pk+1 and n
m

= n; so m = 1, contradiction.

Consider now the case where there are at least two terms cj , ch �= 0, with
j �= h.
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If
ej

eh
∈ R, then ej ∈ R(eh), contradiction to the linear independence of

{ei} over R. Then
ej

eh
�∈ R.

The extension F | R is separable and normal, because R is the splitting
field of (Xn − p1) · · · (Xn − pk).

Consider the automorphisms F → F . There is one of these automor-
phisms ϕ such that

ϕ(ej)

ϕ(eh)
�= ej

eh
.

Apply ϕ to the equation 4.3.1.
Since every eh is the n-th root of an integer, for each h it is:

ϕ(eh) = εrheh

for some integer rh, and
ϕ( m

√
pk+1) = εr0e0

for some integer r0.
Furthermore, for i �= j,

ri �≡ rj mod n,

i.e. ei and ej are multiplied by different n-th roots of unity under the action
of ϕ. In fact,

ei 
→ εriei

ej 
→ εrjej

ε 
→ ε

and εrieiej = ejϕ(ei) �= eiϕ(ej) = εrjejei.
Since ε ∈ R, this contradicts the assumed linear independence of {ei}

over R.

Now we are ready to prove the theorem for the case where n is odd.

Proof. We proceed by induction over k, and prove the theorem with Q
replaced by R. We have already noted that from this follows the thesis.

When k = 0, there is nothing to prove.
Suppose that our assumption is true for some k, i.e.

[F : R] = nk,
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where F = R
(
p

1/n
1 , . . . , p

1/n
k

)
. Choose a prime pk+1 distinct from each

p1, . . . , pk.
By lemmas 1 and 3 the polynomial

Xn − pk+1 ∈ F [X]

is irreducible over F . Then

[F ( n
√

pk+1) : F ] = n.

By multiplicativity if degrees, we obtain

[F ( n
√

pk+1) : R] = nk+1.

It follows that
[E ( n

√
pk+1) : Q] = nk+1,

so our theorem is proved.

4.3.2 Proof for the case where n is even

Let g ≥ k be a fixed integer. We define the fields:

Sg = Q(
√

p1, . . . ,
√

pg)

Tg = R(
√

p1, . . . ,
√

pg)

E∗ = Sg( n
√

p1, . . . , n
√

pk)

F ∗ = Tg( n
√

p1, . . . , n
√

pk)

If g = k, the field E∗ and F ∗ are equal to E and F respectively, since√
pi ∈ Q( n

√
pi), because n is even.

Lemma 4.3.4. Let n, m > 0 be integers, n even and m odd, and 0 < a ∈ Q.
No irrational number of the form m

√
a lies in any of the fields Tg.
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Proof. As in the proof of Lemma 4.3.2, m
√

a �∈ R, and the Galois group
Gal(Q( m

√
a, ε) | Q) is not abelian.

It only remains to prove that Tg is an abelian extension of Q. This
is true, because R is abelian and all intermediate fields have degree
[R(

√
p1, . . . ,

√
pi+1) : R(

√
p1, . . . ,

√
pi)] = 2.

Remark. The assertion holds also for 4
√

a, where 0 < a ∈ Q, if
√

a is
irrational.

Lemma 4.3.5. Assume that Theorems 4.1.1 and 4.1.2 hold for some fixed k
with Q replaced by Tg, i.e. the field Tg( n

√
p1, . . . , n

√
pk) has degree nk over Tg,

i.e. the set {ei} is linearly independent over Tg.
Take a prime pk+1 distinct from the primes p1, . . . , pk. Then, for any integer
m > 2 which divides n, the equation

m
√

pk+1 =
nk∑
i=1

ciei, (4.3.3)

where the ci lie in Tg, is impossible.

Proof. Since m > 2, either 4 divides m or m has an odd factor. The proof is
the same as Lemma 4.3.3.

Now the proof of the theorem for even n.

Proof. Apply Lemma 4.3.1 to the polynomial

Xn/2 −√
pk+1

to show that it is irreducible and by Lemma 4.3.5 obtain the relations:

[F ∗ : Tg] =
(n

2

)k

for all k ≤ g

[Sg : Q] = 2g for all g.
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The first relation implies that [E∗ : Sg] =
(

n
2

)k
.

For g = k we get

[E : Q] = [E : Sk][Sk : Q] = nk,

so our theorem is proved.

4.3.3 Elementary proof for the case n = 2

The case n = 2 is much easier than the general case.
In the nontrivial case considered in Lemma 4.3.5, we have

√
pk+1 =

2k∑
i=1

ciei,

where ci ∈ Q, with at least two nonzero terms.
There must be at least one pi which occurs with different exponents (0

and 1
2
) in this sum. We can assume that this pi = pk. We obtain

√
pk+1 = a + b

√
pk,

where 0 �= a, b ∈ Q(
√

p1, . . . ,
√

pk−1).
Squaring both sides we obtain

pk+1 = a2 + b2pk + 2ab
√

pk.

Hence
√

pk ∈ Q(
√

p1, . . . ,
√

pk−1), and this contradicts the induction
hypothesis.



Appendix A

Some results in Galois theory

In this chapter we illustrate some definitions and results concerning field
extensions and Galois theory, which we used in the previous chapters. We
shall not write the proofs, which can be found in every book treating Galois
theory, for example [1] or [3].

A.1 Separable extensions

Proposition A.1.1 (Multiplicativity of degrees). Let K ⊆ F ⊆ L be a
tower of fields, where each step has finite degree. Then

[L : K] = [L : F ] [F : K]

Proposition A.1.2. Let L|K be an algebraic extension, and F a subfield of
L, K ⊆ F . Then L|K is separable if and only if L|F and F |K are separable
extensions.

Definition A.1.3. Let L|K be an extension and σ : K → F be an embedding
of K in an algebraically closed field F . The separable degree of L over K

[L : K]s

is the cardinality of the set of extensions of σ to an embedding of L in F .
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A.2 Purely inseparable extensions

Definition A.2.1. Let L|K be an extension and α an element in L algebraic
over K. We say that α is purely inseparable over K if there exixsts an integer
n ≥ 0 such that αpn ∈ K.

Definition A.2.2. We say that the extension L|K is purely inseparable if
one of the following equivalent conditions holds:

1. [L : K]s = 1;

2. every element α ∈ L is purely inseparable over K;

3. for every α ∈ L, the minimum polynomial of α over K is of the form
Xpn − a for some n ≥ 0 and some a ∈ K;

4. there exists a set of generators {αi}i∈I of L over K such that each αi

is purely inseparable over K.

Proposition A.2.3. Let L be an algebraic extension of K. Let E be the
compositum of all subfields F of L such that K ⊆ F and F is separable over
K. Then E is separable over K and L is purely inseparable over E.

A.3 The norm and the trace

Let L|K be a separable field extension of degree n, and σ1 = idL, σ2, . . . σn :
L → K the distinct embeddings of L in an algebraic closure K of K.

Proposition A.3.1 (Linear independence of characters). If c1, . . . , cn ∈
K are such that

n∑
i=1

cix
σi = 0

for all x ∈ L∗, then c1 = · · · = cn = 0.

Definition A.3.2. Let α ∈ L. We define the norm of α as the product

NL|K(α) =

n∏
i=1

ασi
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and the trace of α as the sum

TrL|K(α) =
n∑

i=1

ασi.

Proposition A.3.3. The norm NL|K is a multiplicative homomorphism of
L∗ into K∗.
The trace TrL|K is an additive homomorphism of L into K.

A.4 Cyclotomic fields

Definition A.4.1. Let n ≥ 2 be an integer and K be a field, whose
characteristic does not divide n. The n-th cyclotomic field Kn over K is
the splitting field of Xn − 1 ∈ K[X].

Proposition A.4.2. The extension Kn over K is abelian, i.e. Galois with
abelian group.

Definition A.4.3. Let ε = ε1, ε2, . . . , εr denote the distinct primitive n-th
roots of unity over a field K (where r = ϕ(n)). The polynomial

Φn = Φn(X) =

r∏
i=1

(X − εi) ∈ Kn[X]

is called the n-th cyclotomic polynomial over K.

Theorem A.4.4 (Gauss). Φn is irreducible over Q.

Corollary A.4.5. The degree of the extension Qn over Q is equal to ϕ(n),
where ϕ denotes the Euler ϕ function and

Gal (Qn|Q) ∼= (Z/nZ)∗ .
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A.5 Cyclic extensions

Theorem A.5.1. Let K be a field, and n > 0 an integer prime to the
characteristic of K. Assume that there is a primitive n-th root of unity in
K.

• Let L be a cyclic extension of degree n. Then there exists α ∈ L, such
that L = K(α) and α satisfies an equation Xn−a = 0 for some a ∈ K.

• Conversely, let a ∈ K. Let α be a root of Xn − a. Then K(α) is cyclic
over K and has degree d, where d divides n. Furthermore, αd lies in
K.

Theorem A.5.2 (Hilbert’s Theorem 90). Let L|K be a cyclic extension
of degree n with Galois group G. Let σ be a generator of G. Let β ∈ L.

• The norm NL|K(β) is equal to 1 if and only if there exists an element
0 �= α ∈ L such that

β =
α

ασ
.

• The trace TrL|K(β) is equal to 0 if and only if there exists an element
α ∈ L such that

β = α − ασ.

Lemma A.5.3. Let K be a field of characteristic p > 0. Define ℘ : K → K
as follows:

℘X = ℘(X) := Xp − X.

℘ is an additive homomorphism and its kernel is the primefield,

ker ℘ = P = Fp = {0, 1, . . . , p − 1}.
Theorem A.5.4 (Artin-Schreier). Let K be a field with characteristic
p > 0.

• Let L|K be a cyclic extension of degree p. Then there exists an element
α ∈ L such that L = K(α) and α is root of an Artin-Schreier
polynomial Xp − X − a with some a ∈ K.

• Conversely, given the polynomial Xp −X − a with some a ∈ K, either
it has one root in K, in which case all its roots are in K, or it is
irreducible. In the latter case, if α is a root, then K(α) is cyclic of
degree p over K.
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