
T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

Introduction to F
O

R
T

R
A

N
 90

Student N
otes

R
ob D

avies
C

ardiff H
P

C
 T

raining and E
ducation C

entre

A
lan R

ea
P

arallel C
om

puter C
entre, B

elfast

D
im

itris T
saptsinos

SE
L

 - H
P

C

1 - Introduction
1.1 - P

rogram
m

ing in general
1.1.1 - A

vailable program
m

ing languages
1.1.2 - C

hoosing a program
m

ing language
1.2 - H

istory
1.3 - A

N
S

I S
tandard

1.4 - T
he P

rogram
 - P

lanning
1.5 - T

he P
rogram

 - A
lgorithm

s
1.6 - T

he P
rogram

 - E
xam

ple of an algorithm
1.7 - T

he m
inim

um
 program

1.8 - C
om

pilation
2 - V

ariables and S
tatem

ents
2.1 - D

ata types
2.2 - N

am
ing C

onvention
2.3 - V

ariables
2.3.1 - Im

plicit D
eclaration

2.3.2 - P
aram

eters
2.4 - A

rithm
etic E

xpressions
2.5 - A

ssignm
ent S

tatem
ent

2.6 - S
im

ple Input and O
utput

2.7 - C
om

m
ents

2.8 - P
rogram

 L
ayout

2.9 - D
erived D

ata T
ypes

2.9.1 - D
efinition and specification

2.9.2 - A
ccessing C

om
ponents

2.10 - E
xercises

3 - C
haracter P

rocessing
3.1 - C

haracter T
ype

3.2 - C
haracter C

onstants
3.3 - C

haracter V
ariables

3.4 - C
haracter m

anipulation
3.4.1 - C

oncatenation
3.4.2 - S

ubstrings
3.4.3 - Intrinsic F

unctions
3.5 - E

xercises
4 - A

rrays
4.1 - T

erm
inology

4.1.1 - A
rrays and elem

ents
4.1.2 - A

rray properties
4.2 - S

pecifications
4.3 - A

rray S
ections

4.3.1 - Individual elem
ents

4.3.2 - S
ections

4.4 - V
ector S

ubscripts
4.5 - A

rray storage
4.6 - A

rray A
ssignm

ent
4.6.1 - W

hole array assignm
ent

4.6.2 - A
rray section assignm

ent
4.6.3 - E

lem
ental intrinsic procedures

4.7 - Z
ero-sized arrays

4.8 - Initialising arrays
4.8.1 - C

onstructors
4.8.2 - R

eshape
4.8.3 - D

A
T

A
 statem

ent
4.9 - W

H
E

R
E

4.10 - A
rray intrinsic functions

4.10.1 - E
xam

ple of reduction
4.10.2 - E

xam
ple of inquiry

4.10.3 - E
xam

ple of construction
4.10.4 - E

xam
ple of location

4.11 - E
xercises

5 - L
ogical &

 com
parison expressions

5.1 - R
elational operators

5.2 - L
ogical expressions

5.3 - C
haracter C

om
parisons

5.4 - P
ortability Issues

5.5 - E
xercises

6 - C
ontrol statem

ents
6.1 - C

onditional statem
ents

6.1.1 - F
low

 control
6.1.2 - IF

 statem
ent and construct

6.1.3 - S
E

L
E

C
T

 C
A

S
E

 construct
6.1.4 - G

O
T

O
6.2 - R

epetition
6.2.1 - D

O
 construct

6.2.2 - T
ransferring C

ontrol
6.3 - E

xercises
7 - P

rogram
 units

7.1 - P
rogram

 structure
7.2 - T

he m
ain program

7.3 - P
rocedures

7.3.1 - A
ctual and dum

m
y argum

ents
7.3.2 - Internal procedures
7.3.3 - E

xternal procedures
7.4 - P

rocedure variables
7.4.1 - S

A
V

E
7.5 - Interface blocks
7.6 - P

rocedures argum
ents

7.6.1 - A
ssum

ed shape objects
7.6.2 - T

he IN
T

E
N

T
 attribute

7.6.3 - K
eyw

ord argum
ents

7.6.4 - O
ptional argum

ents
7.6.5 - P

rocedures as argum
ents

7.7 - R
ecursion

7.8 - G
eneric procedures

7.9 - M
odules

7.9.1 - G
lobal data

7.9.2 - M
odule procedures

7.9.3 - P
U

B
L

IC
 and P

R
IV

A
T

E
7.9.4 - G

eneric procedures
7.10 - O

verloading operators
7.11 - D

efining operators
7.12 - A

ssignm
ent overloading

7.13 - S
cope

7.13.1 - S
coping units

7.13.2 - L
abels and nam

es
7.14 - E

xercises
8 - Interactive Input and O

utput
8.1 - F

O
R

M
A

T
 S

tatem
ent

8.2 - E
dit D

escriptors
8.2.1 - Integer
8.2.2 - R

eal - F
ixed P

oint F
orm

8.2.3 - R
eal - E

xponential F
orm

8.2.4 - C
haracter

8.2.5 - S
kip C

haracter P
ositions

8.2.6 - L
ogical

8.2.7 - O
ther S

pecial C
haracters

8.3 - Input/O
utput L

ists
8.3.1 - D

erived D
ataT

ypes
8.3.2 - Im

plied D
O

 L
oop

8.4 - N
am

elist
8.5 - N

on-A
dvancing I/O

8.6 - E
xercises

9 - F
ile-based Input and O

utput
9.1 - U

nit N
um

bers
9.2 - R

E
A

D
 and W

R
IT

E
 S

tatem
ents

9.2.1 - R
E

A
D

 S
tatem

ent
9.2.2 - W

R
IT

E
 S

tatem
ent

9.3 - O
P

E
N

 S
tatem

ent
9.4 - C

L
O

S
E

 statem
ent

9.5 - IN
Q

U
IR

E
 statem

ent
9.6 - D

irect A
ccess F

iles
9.7 - E

xercises
10 - D

ynam
ic arrays

10.1 - A
llocatable arrays

10.1.1 - S
pecification

10.1.2 - A
llocating and deallocating storage

10.1.3 - S
tatus of allocatable arrays

10.2 - M
em

ory leaks
10.3 - E

xercises
11 - P

ointer V
ariables

11.1 - W
hat are P

ointers?
11.1.1 - P

ointers and targets
11.2 - S

pecifications
11.3 - P

ointer assignm
ent

11.3.1 - D
ereferencing

11.4 - P
ointer association status

11.5 - D
ynam

ic storage
11.5.1 - C

om
m

on errors
11.6 - A

rray pointers
11.7 - D

erived data types
11.7.1 - L

inked lists
11.8 - P

ointer argum
ents

11.9 - P
ointer functions

11.10 - E
xercises

A
ppendix A

: - Intrinsic procedures
A

.1 - A
rgum

ent presence enquiry
A

.2 - N
um

eric functions
A

.3 - M
athem

atical functions

A
.4 - C

haracter functions
A

.5 - K
IN

D
 functions

A
.6 - L

ogical functions
A

.7 - N
um

eric enquiry functions
A

.8 - B
it enquiry functions

A
.9 - B

it m
anipulation functions

A
.10 - T

ransfer functions
A

.11 - F
loating point m

anipulation functions
A

.12 - V
ector and m

atrix functions
A

.13 - A
rray reduction functions

A
.14 - A

rray enquiry functions
A

.15 - A
rray constructor functions

A
.16 - A

rray reshape and m
anipulation functions

A
.17 - P

ointer association status enquiry functions
A

.18 - Intrinsic subroutines
A

ppendix B
: - F

urther reading

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

1 Introduction

1.1 P
rogram

m
ing in general

A
 program

 is the tool a user em
ploys to exploit the pow

er of the com
puter. A

 program
 is w

ritten in a
language w

hich is understood by the com
puter hardw

are. A
 program

 consists of a sequence of steps
w

hich w
hen executed result in a task being carried out. E

xecution m
eans that the com

puter is able to
interpret each step (instruction), interpretation refers to understanding w

hat is required and instructing
the hardw

are to carry it out. E
ach instruction m

ight require a calculation to be perform
ed, or a decision

to be selected, or som
e inform

ation to be stored or retrieved. T
he nature of the instruction depends on

w
hat program

m
ing language is used. E

ach program
m

ing language has its ow
n set of statem

ents.

1.1.1 A
vailable program

m
ing languages

T
here are hundreds of program

m
ing languages. A

 general txonom
y of the available program

m
ing

languages is given below
.

M
achine codes use strings of 0s and 1s to express instructions and they dependent on the

underlying hardw
are.

A
ssem

bly languages are also dependent on hardw
are and utilise a sym

bolic form
 to express

instructions.

H
igh level languages w

ere developed to ease the program
m

ing effort and to provide hardw
are

independence. D
espite that they are m

ulti-purpose languages they have different strengths. F
or

exam
ple, F

ortran is popular w
ith the scientific and engineering com

m
unity, C

obol is used for
business applications and C

 for system
s program

m
ing.

L
ogic program

m
ing involves the construction of a database w

ith facts and rules and the program
exam

ines the database to locate one or m
ore rule that apply w

ith a given input.

F
unctional program

m
ing involves the construction of functions. A

 function is w
ritten using norm

al
m

athem
atical principles and the com

puter evaluates the function and prints the result(s).

S
im

ulation languages are used to m
odel activities of discrete system

s (traffic flow
) and are used to

predict the behaviour (traffic jam
s) of the system

 by asking hypothetical questions (traffic density
increase)

S
tring m

anipulation languages perform
 pattern m

atching w
here strings of characters are com

pared.

O
bject-oriented languages such as S

m
alltalk provide program

m
ing environm

ents by integrating
the language w

ith support tools. L
anguages such as C

+
+

 encourage the decom
position of a

problem
 into sm

aller sub-problem
s by allow

ing encapsulation, polym
orphism

 and inheritance.

4G
L

s rem
ove the need for a user to w

rite program
s from

 scratch by using pre-program
m

ed form
s.

1.1.2 C
hoosing a program

m
ing language

T
he choice of w

hat language to em
ploy depends on tw

o factors:

P
ractical considerations - these include cost consideration (a com

pany m
ight have already invested

a lot of m
oney in a particular language by purchasing appropriate com

pilers/hardw
are. E

xisting
F

ortran program
s easier to change to 90 rather than to C

); application consideration (F
ortran is the

language for num
ber crunching but w

ould not use for database developm
ent); expertise

consideration (cost for re-training staff in a new
 language).

L
anguage considerations: In general one desires a language w

ith a notation that fits the problem
,

sim
ple to w

rite and learn, pow
erful operations etc. F

ortran is superior to other languages for
num

erical com
putation, m

any diverse and reliable libraries of routines are available, an official
standard exists w

hich helps tow
ards portability.

1.2 H
istory

F
ortran (m

athem
atical F

O
R

m
ula T

R
A

N
slation system

) w
as originally developed in 1954 by IB

M
.

F
ortran w

as one the first to allow
 the program

m
er to use a higher level language rather than m

achine
code (0s and 1s) or assem

bly language (using m
nem

onics). T
his resulted in program

s being easier to
read, understand and debug and saved the program

m
er from

 having to w
ork w

ith the details of the
underlying com

puter architecture.

In 1958 the second version w
as released w

ith a num
ber of additions (subroutines, functions, com

m
on

blocks). A
 num

ber of other com
panies then started developing their ow

n versions of com
pilers

(program
s w

hich translate the high level com
m

ands to m
achine code) to deal w

ith the problem
 of

portability (m
achine dependency).

In 1962 F
ortran IV

 w
as released. T

his attem
pted to standardize the language in order to w

ork
independent of the com

puter (as long as the F
ortran IV

 com
piler w

as available!)

In 1966 the first A
N

S
I (A

m
erican N

ational S
tandards Institute) standard w

as released w
hich defined a

solid base for further developm
ent of the language.

In 1978 the second A
N

S
I standard w

as released w
hich standardized extensions, allow

ed structured
program

m
ing, and introduced new

 features for the IF
 construct and the character data type.

T
he third A

N
S

I standard w
as released in 1991, w

ith a new
 revision expected w

ithin 10 years.

1.3 A
N

SI Standard

F
ortran 90 is a superset of F

ortran 77. N
ew

 facilities for array type operations, new
 m

ethods for
specifying precision, free form

, recursion, dynam
ic arrays etc. w

ere introduced. D
espite that the w

hole
F

ortran77 is included the new
 A

N
S

I standard proposes that som
e of the F

ortran77 features are obsolete
and w

ill be rem
oved in the next version.

In theory a F
ortran 77 program

 should com
pile successfully w

ith a F
ortran 90 com

piler w
ith m

inor
changes. T

his is the last tim
e a reference to F

ortran 77 is m
ade and it is recom

m
ended that program

m
ers

new
 to F

ortran not to consult any F
ortran 77 books.

T
he F

ortran 90 version w
as augm

ented w
ith a num

ber of new
 features because previously m

odern
developm

ents w
ere not accom

m
odated. D

evelopm
ents such as the recent im

portance of dynam
ic data

structures and the (re)introduction of parallel architecture.

C
om

paring w
ith other languages, and only for num

ber crunching, one can see that F
ortran90 scores

higher on num
eric polym

orphism
, decim

al precision selection, real K
ind type etc. O

nly 90 has data
parallel capabilities m

eaningful for num
eric com

putation w
hich are m

issing from
 other languages. A

lso
90’s data abstraction is not as pow

erful as in C
+

+
 but it avoids the com

plexities of object-oriented
program

m
ing.

1.4 T
he P

rogram
 - P

lanning

W
riting a program

 is not a floating task. P
revious to code w

riting one has to go through certain stages:

A
nalyse and specify requirem

ents.

D
esign the solution.

C
ode the solution using the chosen program

m
ing language.

A
t the end of coding, verification, testing and m

aintenance are also required.

T
he stages are iterative and the sooner errors are found the better. T

hese stages though are not discussed
in this course but the interested reader can consult any softw

are book for m
ore inform

ation. H
ere, the

concentration lies w
ith coding w

ith a brief introduction to design using algorithm
s.

1.5 T
he P

rogram
 - A

lgorithm
s

T
he design phase is one of the m

ost im
portant and usually difficult stage. O

ne tool used to design the
program

 is the algorithm
. W

ith an algorithm
 the steps required to carry out a given task are clearly

described. T
he algorithm

 w
ill include instructions for how

 to:

accept inform
ation

display inform
ation

transform
ations

how
 to select decisions

how
 to repeat sub-tasks

w
hen to term

inate

W
riting m

usical score is an algorithm
 w

here the notes express tasks. F
or program

m
ing though an

algorithm
 is expressed using E

nglish-like instructions. A
n algorithm

 is independent of the program
m

ing
language or the com

puter hardw
are to be used, but influenced. A

 program
m

ing language acts like a
convenient m

edium
 for expressing algorithm

 and the com
puter is sim

ply the m
edium

 of execution. T
he

solution process expressed as an algorithm
 can not obviously be executed since com

puters do not handle
w

ell the idiosyncrasies of a natural language or subset of it (but m
oving tow

ards it)

1.6 T
he P

rogram
 - E

xam
ple of an algorithm

C
onsider the follow

ing algorithm
;

1.
G

et a num
ber

2.
S

ave the num
ber

3.
G

et a new
 num

ber

4.
W

hile there is a new
 num

ber

5.
If the new

 num
ber is greater than that saved

S
ave the new

 num
ber

end if

6.
G

et a new
 num

ber

end w
hile

7.
P

rint saved num
ber

T
his is a proposed solution for finding and displaying the greatest num

ber from
 a given list of num

bers.
T

he input term
inates w

hen the user enters the blank character.

N
otice the E

nglish-like expressions. O
bviously, one can use R

ead or Input instead of G
et; or store

instead of save; or ’>
’ instead of greater than. N

otice also the num
bering system

. T
his helps tow

ards
stepw

ise refinem
ent. F

or exam
ple, if statem

ent X
 needed m

ore clarification then the new
 statem

ents take
the value X

.1 to X
.n. T

his m
akes referencing statem

ents easier.

N
otice the indentation and the end-if and end-w

hile w
hich m

ake clear w
here a com

parison / loop
term

inates.

1.7 T
he m

inim
um

 program

C
onsider the follow

ing program

P
R
O
G
R
A
M

n
o
t
h
i
n
g

!

d
o
e
s

n
o
t
h
i
n
g

E
N
D

P
R
O
G
R
A
M

n
o
t
h
i
n
g

T
his is probably the sim

plest F
ortran90 program

. It does nothing. T
he first statem

ent sim
ply tells the

com
piler that a program

 nam
ed nothing is to follow

. T
he second statem

ent is a com
m

ent (because of the
exclam

ation m
ark) and it is ignored by the com

piler. T
he third and last statem

ent inform
s the com

piler
that the program

 term
inates at that point. N

otice that statem
ents betw

een P
R

O
G

R
A

M
 and E

N
D

 are
executed in the order that they are w

ritten (not strictly true but ok for the m
om

ent). K
eyw

ords such as
P

R
O

G
R

A
M

 and E
N

D
 are w

ritten in capitals just for illustration purposes. S
m

all case or a m
ixture of

upper and low
er case is acceptable. S

o P
R

O
G

R
A

M
, P

rogram
, P

R
O

grA
M

 are all acceptable.

C
onsider the follow

ing (m
ore com

plicated) program

P
R
O
G
R
A
M

h
i

!

d
i
s
p
l
a
y

a

m
e
s
s
a
g
e

W
R
I
T
E
(
*
,
*
)

’
H
e
l
l
o

W
o
r
l
d
!
’

E
N
D

P
R
O
G
R
A
M

h
i

T
he above program

 introduces the concept of displaying inform
ation to the screen (or other devices).

R
unning this program

 the m
essage H

ello W
orld (w

ithout the quotes) w
ill appear on the screen. T

his is
achieved by em

ploying the keyw
ord W

R
IT

E
 and typing the appropriate m

essage betw
een single quotes.

O
ne can extend the program

 to, say, display the nam
e of the current user. T

hen using in a sim
ilar fashion

another available keyw
ord (R

E
A

D
) the user can enter his/her nam

e and by changing the W
R

IT
E

statem
ent he/she can display the nam

e.

1.8 C
om

pilation

O
nce the program

 has been designed and entered into a file then the follow
ing steps are follow

ed:

C
om

pilation step: T
his is initiated by the program

m
er, by typing:

f
9
0

f
i
l
e
n
a
m
e
.
f
9
0

its purpose is to translate the high-level statem
ents into m

achine code. T
he com

piler checks the
syntax of the statem

ents against the standard (w
rite rather than w

rite w
ill give an error) and the

sem
antics of the statem

ents (referencing a variable w
ith no declaration). T

his step generates the
object code version w

hich is stored in a file of the sam
e nam

e but different extension.

L
inking step: T

his m
ight be initiated by the com

piler and its purpose is to insert code for a
referenced operation from

 the library. T
his generates the executable code version w

hich again is
stored in a file w

ith a different extension.

E
xecution step: T

his is initiated by the program
m

er/user, by typing a.out, and its purpose is to run
the program

 to get som
e answ

ers. D
uring execution the program

 m
ight crash if it com

es across an
execution error (m

ost com
m

on execution error is the attem
pt to divide by zero).

N
otice that logical errors (m

ultiply rather than add) can not be checked by the com
piler and it is

the responsibility of the designer to identify and elim
inate such errors. O

ne w
ay to do so is by

testing against data w
ith know

n results but for m
ore com

plex program
s testing can not take into

consideration all possible com
binations of inputs therefore great care m

ust be taken during the
initial design. Identifying errors at the design phase is cheaper and easier.

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

2 V
ariables and Statem

ents

2.1 D
ata types

A
s hum

ans w
e process various form

s of inform
ation using senses such as sight, hearing, sm

ell and
touch. M

uch of the m
aterial produced by the academ

ic com
m

unity is processed visually, for exam
ple

books, papers or notes. W
hen processing num

eric m
aterial w

e w
rite the data as a stream

 of num
eric

characters, such as

3
6
5

9
6
.
4

3
.
1
4
1
5
9

and then read the num
bers as stream

s of characters. H
ow

ever in our m
inds w

e can think of each num
ber

as a num
eric value rather than a series of characters. T

his is sim
ilar to the w

ay a com
puter processes

num
eric data.

A
 com

puter program
m

er w
riting a program

 to m
anipulate num

eric values uniquely
identifies each value by a nam

e w
hich refers to a discrete object rem

em
bered in the com

puter’s m
em

ory.
T

hus the previous values m
ay be identified by nam

es such as:

d
a
y
s
i
n
y
e
a
r

t
e
m
p
e
r
a
t
u
r
e

p
i

N
ote that it is good program

m
ing practice to use nam

es that relate to the value that is being referred to.

T
here are tw

o m
ain form

s of num
eric data, nam

ely IN
T

E
G

E
R

 and R
E

A
L

. Integers are essentially a
restricted set of the m

athem
atical w

hole num
bers and as such m

ay only have discrete values (i.e. no
fractional part). T

he follow
ing are valid integer values:

-
3
1
2
4

-
9
6

0

1
0

3
6
5

R
eal num

bers m
ay have a fractional part and have a greater range of possible values. F

or exam
ple:

1
0
.
3

-
8
.
4
5

0
.
0
0
0
0
2

T
here are tw

o form
s in w

hich real values m
ay be w

ritten. T
he exam

ples above are in fixed point form
but floating point form

 (sim
ilar to scientific notation) m

ay be used, for exam
ple:

2
.
5
7
6
x
1
0
3
2

1
.
3

x

1
0
-
2
2

m
ay be w

ritten in F
ortran as

2
.
5
7
6
E
3
2

1
.
3
E
-
2
2

w
here the E

 stands for ‘exponent’ or ‘m
ultiplied by 10 to the pow

er of’.

T
he integer and real values listed above, w

hen used in a com
puter program

, are know
n as literal

constants.

W
hy reals and integers? Integers are m

ore accurate for discrete values and are processed faster but reals
are necessary for m

any scientific calculations.

In addition to the basic real and integer num
bers there are other types of num

ber such as double
precision (w

hich have m
ore significant figures than the default R

E
A

L
 type) and com

plex num
bers (w

ith
a real and im

aginary part).

A
s w

ell as num
bers, F

ortran program
s often require other types of data. S

ingle letters, w
ords and

phrases m
ay be represented by the C

H
A

R
A

C
T

E
R

 data type, w
hile the logical values ‘true’ and ‘false’

are represented by the L
O

G
IC

A
L

 data type (details later).

2.2 N
am

ing C
onvention

In F
ortran objects are referred to by nam

e. T
he nam

ing convention perm
its nam

es of betw
een 1 and 31

alphanum
eric characters (letters, num

erals and the underscore character) w
ith the restriction that the first

character m
ust be a letter. T

here is no case sensitivity in F
ortran, the low

er and uppercase versions of a
character are treated as equivalent.

U
nlike som

e program
m

ing languages in w
hich certain w

ords are reserved and m
ay only be used by the

program
m

er in precisely defined contexts F
ortran has no reserved w

ords. T
he program

m
er should take

great care w
hen nam

ing objects not to use any w
ords w

hich form
 part of the language. In the course

notes all w
ords w

hich have a defined m
eaning in the F

ortran languages are given in uppercase and the
user defined objects are given in low

ercase.

2.3 V
ariables

P
rogram

s m
ake use of objects w

hose value is allow
ed to change w

hile it is running, these are know
n as

variables. A
 variable m

ust have an associated data type, such as R
E

A
L

 or IN
T

E
G

E
R

, and be identified
at the start of the section of the program

 in w
hich it is used (see later). T

his is referred to as declaring a
variable, for exam

ple:

R
E
A
L

:
:

t
e
m
p
e
r
a
t
u
r
e
,

p
r
e
s
s
u
r
e

I
N
T
E
G
E
R

:
:

c
o
u
n
t
,

h
o
u
r
s
,

m
i
n
u
t
e
s

declares five variables, tw
o w

hich have values that are real num
bers and three that have integer values.

T
he variable declaration statem

ent m
ay also be used to assign an initial value to variables as they are

declared. If an initial value is not assigned to a variable it should not be assum
ed to have any value until

one is assigned using the assignm
ent statem

ent described below
.

R
E
A
L

:
:

t
e
m
p
e
r
a
t
u
r
e
=
9
6
.
4

I
N
T
E
G
E
R

:
:

d
a
y
s
i
n
y
e
a
r
=
3
6
5
,

m
o
n
t
h
s
i
n
y
e
a
r
=
1
2
,

w
e
e
k
s
i
n
y
e
a
r
=
5
2

T
he general form

 of a variable declaration is:

T
Y
P
E

[
,
a
t
t
r
]

:
:

v
a
r
i
a
b
l
e

l
i
s
t

W
here attr are optional F

ortran 90 ‘com
m

ands’ to further define the properties of variables. A
ttributes

w
ill be described throughout the course as they are introduced.

2.3.1 Im
plicit D

eclaration

F
ortran 90 perm

its variables to be typed and declared im
plicitly, that is w

ithout using a variable
declaration as given above. A

n im
plicit declaration is perform

ed w
henever a nam

e appears w
hich has

not been explicitly declared and the program
 section does not contain the statem

ent IM
P

L
IC

IT
 N

O
N

E
(see sam

ple program
). T

he im
plicit declaration facility is provided to com

ply w
ith earlier definitions of

the F
ortran language and as this has been the cause of m

any program
m

ing problem
s this feature should

be disabled using the IM
P

L
IC

T
 N

O
N

E
 statem

ent. V
ariables are typed according to the initial letter of

their nam
e: those beginning w

ith I, J, K
, L

, M
 and N

 being integers; and those beginning A
 to H

 and O
to Z

 being reals.

2.3.2 P
aram

eters

T
he term

 param
eter in F

ortran is slightly m
isleading, it refers to a value w

hich w
ill be constant, for

exam
ple the program

m
er w

ill w
ant the value of pi to be unaltered during a program

. T
herefore pi m

ay
be defined as

R
E
A
L
,

P
A
R
A
M
E
T
E
R

:
:

p
i
=
3
.
1
4
1
5
9
2

T
he w

ord R
E

A
L

 defines the type of pi and the w
ord P

A
R

A
M

E
T

E
R

 is an attribute of the R
E

A
L

 object
w

hich is know
n as pi and has the value 3.141592. P

aram
eters m

ay also be defined for other data types,
for exam

ple:

I
N
T
E
G
E
R
,

P
A
R
A
M
E
T
E
R

:
:

m
a
x
v
a
l
u
e
=
1
0
2
4

I
N
T
E
G
E
R
,

P
A
R
A
M
E
T
E
R

:
:

r
e
p
e
a
t
c
o
u
n
t
=
1
0
0
0

T
he objects declared to be param

eters m
ay not be altered in the program

.

2.4 A
rithm

etic E
xpressions

V
ariables, param

eters and num
eric constants m

ay be com
bined using the follow

ing operators:

+
 A

ddition

- S
ubtraction

* M
ultiplication

/ D
ivision

** E
xponentiation

F
or exam

ple

c
o
s
t

*

n
u
m
b
e
r

c
o
s
t

*

n
u
m
b
e
r

+

p
o
s
t
a
g
e

1
0

+

3

4

*

p
i

1

/

p
r
e
s
s
u
r
e

p
i

*

r
a
d
i
u
s

*

r
a
d
i
u
s

T
he expressions form

ed w
ith arithm

etic operators m
ay be used in a variety of w

ays, one of w
hich, the

assignm
ent statem

ent, is described in the next section.

T
he arithm

etic expression m
ay also include brackets w

hich should be used to clarify the required
sequence of operations in an expression. F

or exam
ple:

p
i
*
r
a
d
i
u
s
*
*
2

m
ight be interpreted as

(
p
i
*
r
a
d
i
u
s
)
*
*
2

T
he section of the expression w

hich appears inside brackets is alw
ays evaluated first. In expressions

w
hich contain m

ore than one operator the operations are carried out in an order w
hich is determ

ined by
w

hat are know
n as the "rules of precedence". T

he follow
ing table lists the priority or order of execution

of the various operators.

of the various operators.

T
he operators are evaluated in order of ascending precedence, that is, brackets first, then ** follow

ed by
* / and finally +

 -. O
perators of equal precedence are evaluated w

orking from
 left to right across the

expression.

2.5 A
ssignm

ent Statem
ent

T
he expressions form

ed using arithm
etic operators m

ay be used to assign a value to a variable using the
assignm

ent operator, thus

a
r
e
a

=

p
i
*
r
a
d
i
u
s
*
r
a
d
i
u
s

T
he assignm

ent statem
ent has the general form

:

v
a
r
i
a
b
l
e

=

e
x
p
r
e
s
s
i
o
n

2.6 Sim
ple Input and O

utput

O
n m

ost com
puter system

s the user can tell the program
 w

hat values to perform
 a calculation upon by

typing these at a keyboard. T
his is know

n as input and the values are assigned to the correct variables
using the R

E
A

D
 statem

ent. T
he user w

ill also w
ish to know

 the results generated by the program
 and

this w
ill usually be displayed on a screen using the W

R
IT

E
 statem

ent - this is know
n as output.

T
o read in a value to say, a variable called radius, the follow

ing statem
ent w

ould be suitable

R
E
A
D
(
5
,
*
)
r
a
d
i
u
s

R
E
A
D
(
*
,
*
)

r
a
d
i
u
s

and the value of the variable area w
ould be displayed on the screen by the follow

ing statem
ent

W
R
I
T
E
(
6
,
*
)

a
r
e
a

W
R
I
T
E
(
*
,
*
)

a
r
e
a

T
he characters "(5,*)" should appear after every R

E
A

D
 and the characters "(6,*)" after every W

R
IT

E
(note that "(*,*)" m

ay appear w
ith either the R

E
A

D
 or W

R
IT

E
 statem

ents). T
he significance of these

w
ill be explained in a later section.

S
everal variables (or expressions) m

ay be specified on one R
E

A
D

 or W
R

IT
E

 statem
ent as follow

s:

R
E
A
D
(
5
,
*
)

l
e
n
g
t
h
,

b
r
e
a
d
t
h

W
R
I
T
E
(
6
,
*
)

t
e
m
p
e
r
a
t
u
r
e
,

p
r
e
s
s
u
r
e
,

m
a
s
s

W
R
I
T
E
(
*
,
*
)

p
i
*
r
a
d
i
u
s
*
*
2
,

2
.
0

2.7 C
om

m
ents

A
ll program

s should have a textual com
m

entary explaining the structure and m
eaning of each section of

the program
. A

ll characters appearing on a line to the right of the ! character are ignored by the com
piler

and do not form
 any part of the program

. T
he text appearing after a ! character is referred to as a

com
m

ent and this feature should be used to explain to the reader of a program
 w

hat the program
 is

trying to achieve. T
his is particularly im

portant if the program
 w

ill have to be altered in the future
especially as this is likely to be perform

ed by a different program
m

er.

a
r
e
a

=

p
i
*
r
a
d
i
u
s
*
r
a
d
i
u
s

!
C
a
l
c
u
l
a
t
e

t
h
e

a
r
e
a

o
f

c
i
r
c
l
e

C
om

m
ents are also used to inhibit the action of statem

ents that are used to output interm
ediate values

w
hen testing a program

 but w
hich m

ay be required again. T
he follow

ing statem
ent is said to be

com
m

ented out and is not executed.

!

W
R
I
T
E

(
6
,
*
)

t
e
m
p
,

r
a
d
i
u
s
*
r
a
d
i
u
s

2.8 P
rogram

 L
ayout

A
 sam

ple program
:

P
R
O
G
R
A
M

c
i
r
c
l
e
_
a
r
e
a

I
M
P
L
I
C
I
T

N
O
N
E

!
r
e
a
d
s

a

v
a
l
u
e

r
e
p
r
e
s
e
n
t
i
n
g

t
h
e

r
a
d
i
u
s

o
f

a

c
i
r
c
l
e
,

!
t
h
e
n

c
a
l
c
u
l
a
t
e
s

a
n
d

w
r
i
t
e
s

o
u
t

t
h
e

a
r
e
a

o
f

t
h
e

c
i
r
c
l
e
.

R
E
A
L

:
:

r
a
d
i
u
s
,

a
r
e
a

R
E
A
L
,

P
A
R
A
M
E
T
E
R

:
:

p
i
=
3
.
1
4
1
5
9
2

R
E
A
D

(
5
,
*
)

r
a
d
i
u
s

a
r
e
a

=

p
i
*
r
a
d
i
u
s
*
r
a
d
i
u
s

W
R
I
T
E

(
6
,
*
)

a
r
e
a

E
N
D

P
R
O
G
R
A
M

c
i
r
c
l
e
_
a
r
e
a

T
here are a num

ber of points to note in this program
:

the program
 starts w

ith a program
 statem

ent in w
hich the program

 is given a nam
e, i.e. circle_area

the program
 is term

inated w
ith an E

N
D

 P
R

O
G

R
A

M
 statem

ent

there is an explanation of the program
 in the form

 of com
m

ent statem
ents

the variable declarations follow
 the program

 statem
ent

the variable declaration are grouped together and appear before statem
ents such as assignm

ents
statem

ents and input/output statem
ents

blank lines are used to em
phasize the different sections of the program

In general program
s should be laid out w

ith each statem
ent on one line. H

ow
ever, there is an upper lim

it
of 132 characters per line, (depending on the editor used it is often m

ore convenient to keep to a
m

axim
um

 of 80 characters per line) a statem
ent w

hich exceeds the line lim
it m

ay be continued on the
next line by placing an am

persand &
 at the end of the line to be continued. T

he line should not be
broken at an arbitrary point but at a sensible place.

W
R
I
T
E

(
6
,
*
)

t
e
m
p
_
v
a
l
u
e
,

p
i
*
r
a
d
i
u
s
*
r
a
d
i
u
s
,

&

l
e
n
g
t
h
,

b
r
e
a
d
t
h

M
ore than one statem

ent m
ay be placed on one line using a sem

icolon as a statem
ent separator.

l
e
n
g
t
h
=
1
0
.
0
;

b
r
e
a
d
t
h
=
2
0
.
0
;

a
r
e
a
=

l
e
n
g
t
h
*
b
r
e
a
d
t
h

T
his is not recom

m
ended as it can lead to program

s w
hich are difficult to read - a statem

ent m
ay be

overlooked.

2.9 D
erived D

ata T
ypes

2.9.1 D
efinition and specification

In m
any algorithm

s there are data item
s w

hich can be grouped together to form
 an aggregate structure. A

circle, for exam
ple m

ay have the follow
ing properties:

r
a
d
i
u
s

a
r
e
a

A
 program

m
er m

ay define special data types, know
n as derived data types to create aggregate structures,

thus a circle could be m
odelled as follow

s:

T
Y
P
E

c
i
r
c
l
e

I
N
T
E
G
E
R

:
:

r
a
d
i
u
s

R
E
A
L

:
:

a
r
e
a

E
N
D
T
Y
P
E

c
i
r
c
l
e

T
his w

ould create a tem
plate w

hich could be used to declare variables of this type

T
Y
P
E

(
c
i
r
c
l
e
)

:
:

c
i
r
_
a
,

c
i
r
_
b

Just like the intrinsic data types, the com
ponents of a derived data type m

ay be given an initial value.
F

or exam
ple:

T
Y
P
E

(
c
i
r
c
l
e
)

:
:

c
i
r
=
c
i
r
c
l
e
(
2
,
1
2
.
5
7
)

T
he derived type is so nam

ed because it is derived from
 the intrinsic types, such as real and integer.

H
ow

ever derived types m
ay be used in the definition of other derived types. If a type, point, is defined

T
Y
P
E

p
o
i
n
t

R
E
A
L

:
:

x
_
c
o
o
r
d
,

y
_
c
o
o
r
d

E
N
D
T
Y
P
E

p
o
i
n
t

then the previously defined type, rectangle, could be m
odified to include a spacial position

T
Y
P
E

c
i
r
c
l
e

T
Y
P
E

(
p
o
i
n
t
)

:
:

c
e
n
t
r
e

I
N
T
E
G
E
R

:
:

r
a
d
i
u
s

R
E
A
L

:
:

a
r
e
a

E
N
D
T
Y
P
E

c
i
r
c
l
e

T
he general form

 of a derived type definition is

T
Y
P
E

t
y
p
e

n
a
m
e

c
o
m
p
o
n
e
n
t

d
e
f
i
n
i
t
i
o
n

s
t
a
t
e
m
e
n
t

c
o
m
p
o
n
e
n
t

d
e
f
i
n
i
t
i
o
n

s
t
a
t
e
m
e
n
t

.
.
.
.
.

E
N
D

T
Y
P
E

[
t
y
p
e

n
a
m
e
]

T
his is a sim

plified version of the com
plete specification of a derived type, other elem

ents m
ay be added

to this definition later. N
ote that the typenam

e is optional on the E
N

D
T

Y
P

E
 statem

ent but should alw
ays

be included to im
prove program

 clarity.

T
he general form

 of the variable declaration statem
ent m

ay be m
odified to included the specification of

a derived type

T
Y
P
E

[
(
t
y
p
e

n
a
m
e
)
]

[
,
a
t
t
r
]

:
:

v
a
r
i
a
b
l
e

l
i
s
t

2.9.2 A
ccessing C

om
ponents

T
he elem

ents of a derived type m
ay be accessed by using the variable nam

e and the elem
ent nam

e
separated by the %

 character, as follow
s

c
i
r
_
a
%
r
a
d
i
u
s

=

1
0
.
0

c
i
r
_
a
%
a
r
e
a

=

p
i

*

c
i
r
_
a
%
r
a
d
i
u
s
*
*
2

If a derived type has an elem
ent w

hich is a derived type then a com
ponent m

ay be accessed as follow
s

c
i
r
_
a
%
c
e
n
t
r
e
%
x
_
c
o
o
r
d

=

5
.
0

c
i
r
_
a
%
c
e
n
t
r
e
%
y
_
c
o
o
r
d

=

6
.
0

2.10 E
xercises

1.
W

hich of the follow
ing values represent integers and w

hich represent real num
bers?

0

1

1
.
2
E
-
1
0

-
1

-
1
.
0

0
.
0

0
.
1

1
0
2
4

6
4
.
0

-
1
.
5
6
E
1
2

2.
W

hich of the follow
ing are invalid nam

es in F
ortran and state w

hy?

a
b
i
g
n
u
m
b
e
r

t
h
e
d
a
t
e

A
_
H
U
G
E
_
N
U
M
B
E
R

T
i
m
e
.
m
i
n
u
t
e
s

1
0
t
i
m
e
s

P
r
o
g
r
a
m

1
0
6
6

X

H
E
L
P
!

f
[
t
]

n
o

w
a
y

a
n
o
t
h
e
r
-
n
u
m
b
e
r

3.
G

iven the follow
ing variable declarations and assignm

ents evaluate the subsequent expressions
and state the type of each result. F

inally, insert brackets to clarify the m
eaning of these expressions

according to the operator precedence table.

R
E
A
L

:
:

x
=
1
0
.
0

y
=
0
.
0
1
,

z
=
0
.
5

I
N
T
E
G
E
R

:
:

i
=
1
0
,

j
=
2
5
,

k
=
3

i

+

j

+

k

*

i

z

*

x

/

1
0

+

k

z

*

k

+

z

*

j

+

z

*

i

i

*

y

-

k

/

x

+

j

4.
W

rite definitions of derived types w
hich represent the follow

ing

(a) a point w
ith x,y and z coordinates.

(b) a tim
e in hours, m

inutes and seconds.

(c) a date in day, m
onth and year.

(d) a tim
e com

prised of the tw
o types above.

(e) a type containing 3 reals and 2 integers.

5.
W

rite a program
 w

hich w
ill read in tw

o real num
bers representing the length and breadth of a

rectangle, and w
ill print out the area calculated as length tim

es breadth. (U
se a derived type.)

6.
W

rite a program
 w

hich w
ill read in five integers and w

ill output the sum
 and average of the

num
bers.

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

3 C
haracter P

rocessing

3.1 C
haracter T

ype

In the previous chapter the intrinsic num
eric types real and integer w

ere introduced, a third intrinsic type
character is presented in this section. T

his type is used w
hen the data w

hich is being m
anipulated is in

the form
 of characters and w

ords rather than num
bers. C

haracter handling is very im
portant in num

eric
applications as the input or output of undocum

ented num
bers is not very user friendly.

In F
ortran characters m

ay be treated individually or as contiguous strings. S
trings have a specific length

and individual characters w
ithin the string are referred to by position, the left m

ost character at position
1, etc. A

s w
ith num

eric data the program
m

er m
ay specify literal constants of intrinsic type character as

described below
.

3.2 C
haracter C

onstants

T
he exam

ple below
 is taken from

 a program
 w

hich calculates the area of a circle, the program
 reads in a

value for the radius and w
rites out the area of the circle. W

ithout prom
pts the user‘s view

 of such a
program

 is very bleak, that is there is no indication of w
hat the input is for or w

hen it should be supplied
nor is there an explanation of the output. B

y including som
e character constants (or literals) in the output

the user’s view
 of the program

 can be greatly enhanced, for exam
ple

W
R
I
T
E

(
6
,
*
)

‘
P
l
e
a
s
e

t
y
p
e

a

v
a
l
u
e

f
o
r

t
h
e

r
a
d
i
u
s

o
f

a

c
i
r
c
l
e
’

R
E
A
D

(
5
,
*
)

r
a
d
i
u
s

a
r
e
a

=

p
i
*
r
a
d
i
u
s
*
r
a
d
i
u
s

W
R
I
T
E

(
6
,
*
)

‘
T
h
e

a
r
e
a

o
f

a

c
i
r
c
l
e

o
f

r
a
d
i
u
s

‘
,

r
a
d
i
u
s
,

&

‘

i
s

‘
,

a
r
e
a

T
he characters w

hich appear betw
een pairs of apostrophes are character constants and w

ill appear on
screen as

P
l
e
a
s
e

t
y
p
e

a

v
a
l
u
e

f
o
r

t
h
e

r
a
d
i
u
s

o
f

a

c
i
r
c
l
e

1
2
.
0

T
h
e

a
r
e
a

o
f

a

c
i
r
c
l
e

o
f

r
a
d
i
u
s

1
2
.
0

i
s

4
5
2
.
3
8
9
2
5

T
he double quote character m

ay also be used to define character literals. If a string of characters is to
contain one of the delim

iting characters then the other m
ay be used. H

ow
ever if the string is to contain

both delim
iting characters or a program

m
er w

ishes to alw
ays define strings using the sam

e character
then the delim

iter m
ay appear in a string as tw

o adjacent apostrophes or double quotes. T
hese are then

treated as a single character.

"
T
h
i
s

s
t
r
i
n
g

c
o
n
t
a
i
n
s

a
n

a
p
o
s
t
r
o
p
h
e

‘
.
"

‘
T
h
i
s

s
t
r
i
n
g

c
o
n
t
a
i
n
s

a

d
o
u
b
l
e

q
u
o
t
e

"

.
‘

"
T
h
i
s

s
t
r
i
n
g

c
o
n
t
a
i
n
s

a
n

a
p
o
s
t
r
o
p
h
e

‘

a
n
d

a

d
o
u
b
l
e

q
u
o
t
e

"
"
.
"

T
his w

ould appear in output as

T
h
i
s

s
t
r
i
n
g

c
o
n
t
a
i
n
s

a
n

a
p
o
s
t
r
o
p
h
e

‘
.

T
h
i
s

s
t
r
i
n
g

c
o
n
t
a
i
n
s

a

d
o
u
b
l
e

q
u
o
t
e

"
.

T
h
i
s

s
t
r
i
n
g

c
o
n
t
a
i
n
s

a
n

a
p
o
s
t
r
o
p
h
e

‘

a
n
d

a

d
o
u
b
l
e

q
u
o
t
e

"
.

3.3 C
haracter V

ariables

T
he declaration of character variables is sim

ilar to that for real and integer variables. the follow
ing

statem
ent declares tw

o character variables each of w
hich can contain a single character

C
H
A
R
A
C
T
E
R

:
:

y
e
s
o
r
n
o
,

s
e
x

A
 value m

ay be assigned to a character variable in the form
 of a literal constant thus

y
e
s
o
r
n
o

=

‘
N
’

s
e
x

=

‘
F
’

H
ow

ever character variables are m
ore frequently used to store m

ultiple characters know
n as strings. F

or
exam

ple to store a person’s nam
e the follow

ing declarations and assignm
ents m

ay be m
ade (note the use

of the keyw
ord len)

C
H
A
R
A
C
T
E
R

(
L
E
N
=
1
2
)

:
:

s
u
r
n
a
m
e
,

f
i
r
s
t
n
a
m
e

C
H
A
R
A
C
T
E
R

(
L
E
N
=
6
)

:
:

i
n
i
t
i
a
l
s
,

t
i
t
l
e

t
i
t
l
e

=

‘
P
r
o
f
.
‘

i
n
i
t
i
a
l
s

=

‘
f
j
s
‘

f
i
r
s
t
n
a
m
e

=

‘
F
r
e
d
‘

s
u
r
n
a
m
e

=

‘
B
l
o
g
g
s
‘

N
otice that all the strings w

ere defined as being long enough to contain the literal constants assigned.
V

ariables w
hich have unused characters are space filled at the end. If the variable is not large enough to

contain the characters assigned to it then the leftm
ost are used and the excess truncated, for exam

ple

t
i
t
l
e

=

‘
P
r
o
f
e
s
s
o
r
‘

w
ould be equivalent to

t
i
t
l
e

=

‘
P
r
o
f
e
s
‘

T
he general form

 of a character declaration is:

C
H
A
R
A
C
T
E
R

[
(
l
e
n
=

)
]

[
,
a
t
t
r
i
b
u
t
e
s
]

:
:

n
a
m
e

3.4 C
haracter m

anipulation

3.4.1 C
oncatenation

T
he arithm

etic operators such as +
 - should not be used w

ith character variables. T
he only operator for

character variables is the concatenation operator //. T
his m

ay be used to join tw
o strings as follow

s

C
H
A
R
A
C
T
E
R

(
l
e
n
=
2
4
)

:
:

n
a
m
e

C
H
A
R
A
C
T
E
R

(
l
e
n
=
6
)

:
:

s
u
r
n
a
m
e

s
u
r
n
a
m
e

=

‘
B
l
o
g
g
s
’

n
a
m
e

=

‘
P
r
o
f

‘
/
/
‘

F
r
e
d

‘
/
/
s
u
r
n
a
m
e

A
s w

ith character literals if the expression using the // operator exceeds the length of the variable the
rightm

ost characters are truncated and if too few
 characters are specified the rightm

ost characters are
filled w

ith spaces.

3.4.2 Substrings

A
s the nam

e suggests substrings are sections of larger character strings. T
he characters in a string m

ay
be referred to by position w

ithin the string starting from
 character 1 the leftm

ost character.

C
H
A
R
A
C
T
E
R

(
L
E
N
=
7
)

:
:

l
a
n
g

l
a
n
g

=

‘
F
o
r
t
r
a
n
’

W
R
I
T
E

(
6
,
*
)

l
a
n
g
(
1
:
1
)
,

l
a
n
g
(
2
:
2
)
,

l
a
n
g
(
3
:
4
)
,

l
a
n
g
(
5
:
7
)

w
ould produce the follow

ing output

F
o
r
t
r
a
n

T
he substring is specified as (start-position : end-position). If the value for start-position is om

itted 1 is
assum

ed and if the value for end-position is om
itted the value of the m

axim
um

 length of the string is
assum

ed thus, lang(:3) is equivalent to lang(1:3) and lang(5:) is equivalent to lang(5:7).

T
he start-position and end-position values m

ust be integers or expressions yielding integer values. T
he

start-position m
ust alw

ays be greater than or equal to 1 and the end-position less than or equal to the
string length. If the start-position is greater than the m

axim
um

 length or the end-position then a string of
zero length is the result.

3.4.3 Intrinsic F
unctions

F
unctions w

ill be dealt w
ith in m

ore depth later in the course, how
ever it is convenient to introduce

som
e functions at this early stage. A

n intrinsic function perform
s an action w

hich is defined by the
language standard and the functions tabulated below

 relate to character strings. T
hese intrinsic functions

perform
 a num

ber of com
m

only required character m
anipulations w

hich program
m

ers w
ould otherw

ise
have to w

rite them
selves.

T
he conversion betw

een characters and integers is based on the fact that the available characters form
 a

sequence and the integer values represent the position w
ithin a sequence. A

s there are several possible
character sequences and these are m

achine dependent the precise integer values are not discussed here.
H

ow
ever, it is possible to state that regardless of the actual sequence the follow

ing are possible:

I
N
T
E
G
E
R

:
:

i

C
H
A
R
A
C
T
E
R

:
:

c
h

.
.
.

i
=
I
C
H
A
R
(
C
H
A
R
(
i
)
)

c
h
=
C
H
A
R
(
I
C
H
A
R
(
c
h
)

B
elow

 is an exam
ple of how

 intrinsic functions m
ay be used:

C
H
A
R
A
C
T
E
R
(
l
e
n
=
1
2
)

:
:

s
u
r
n
a
m
e
,

f
i
r
s
t
n
a
m
e

I
N
T
E
G
E
R

:
:

l
e
n
g
t
h
,

p
o
s

.
.
.

l
e
n
g
t
h

=

L
E
N
(
s
u
r
n
a
m
e
)

!
l
e
n
=
1
2

f
i
r
s
t
n
a
m
e

=

‘
W
a
l
t
e
r
‘

p
o
s

=

I
N
D
E
X
(
‘
a
l
‘
,

f
i
r
s
t
n
a
m
e
)

!
p
o
s
=
2

f
i
r
s
t
n
a
m
e

=

‘
F
r
e
d
‘

p
o
s

=

I
N
D
E
X
(
‘
a
l
‘
,

f
i
r
s
t
n
a
m
e
)

!
p
o
s
=
0

l
e
n
g
t
h

=

L
E
N
(
T
R
I
M
(
f
i
r
s
t
n
a
m
e
)
)

!
l
e
n
=
4

3.5 E
xercises

1.
G

iven the follow
ing variable declaration and initialization:

C
H
A
R
A
C
T
E
R
(
l
e
n
=
5
)

:
:

v
o
w
e
l
s
=
‘
a
e
i
o
u
‘

w
hat are the substrings specified below

?

(a) vow
els(1:1)

(b) vow
els(:2)

(c) vow
els(4:)

(d) vow
els(2:4)

2.
G

iven the follow
ing variable declaration and initialization:

C
H
A
R
A
C
T
E
R
(
l
e
n
=
2
7
)

:
:

t
i
t
l
e
=
‘
A
n

I
n
t
r
o
d
u
c
t
i
o
n

t
o

F
o
r
t
r
a
n
.
’

define substrings w
hich w

ould specify the character literals below
?

(a) to

(b) Intro

(c) F
ortran.

3.
U

sing the variable title defined above w
rite expressions, using the intrinsic functions, w

hich w
ould

(a) find the location of the string duct

(b) find the length of the string

(c) extract and concatenate substrings to produce the string F
ortran, A

n Introduction to.

4.
W

rite a program
 w

hich w
ould test the results of the expressions defined in the previous exercise.

5.
D

esign a derived data type w
hich contains the follow

ing details relating to yourself: surnam
e,

forenam
e, intials, title and address. T

he address should be a further derived type containing house
num

ber, street, tow
n/city and country.

6.
W

rite a F
ortran program

 w
hich w

ill request input corresponding to your nam
e and address as

defined in the text and w
hich w

ill output your nam
e and address in tw

o form
s as follow

s:

M
r
.

J
o
s
e
p
h

B
l
o
g
g
s
,

1
2
,

O
i
l

D
r
u
m

L
a
n
e
,

A
n
y
t
o
w
n
,

U
n
i
t
e
d

K
i
n
g
b
o
m

J
F

B
l
o
g
g
s
,

1
2

O
i
l

D
r
u
m

L
a
n
e
,

A
n
y
t
o
w
n

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

4 A
rrays

4.1 T
erm

inology

4.1.1 A
rrays and elem

ents

P
revious m

odules introduced sim
ple data types, such as integer, real and character. In this m

odule a
structured data type called array is introduced.

A
n array is a collection of (scalar) data, all of the sam

e type, w
hose individual elem

ents are arranged in
a regular pattern.

T
here are 3 possible types of arrays depending on the binding of an array to an am

ount of storage.

S
tatic arrays: their size is fixed w

hen the array is declared and can not be altered during execution. T
his

is inflexible for certain circum
stances (one has to re-entry the program

, change the dim
ension(s) and

re-com
pile) and w

asteful in term
s of storage space (since one m

ight declare a very large array to avoid
the previous problem

)

S
em

i-dynam
ic arrays: the size of an array is determ

ined after entering a subroutine and arrays can be
created to m

atch the exact size required but can only be used for a subroutine. In F
ortran90 such arrays

are called assum
ed-shape, and autom

atic arrays

D
ynam

ic arrays : the size and therefore the am
ount of storage used by a dynam

ic array can be altered
during execution. T

his is very flexible but slow
 run-tim

e perform
ance and lack of any bound checking

during com
pilation. In F

ortran90 such arrays are called allocatable arrays.

T
he reasons for using an array are:

E
asier to declare (one variable nam

e instead of tens or even thousands).

E
asier to operate upon (because of w

hole array operations the code is closer to underlying
m

athem
atical form

).

F
lexible accessing (one can easily operate on various array areas in different w

ays).

E
asier to understand the code (notational convenience).

Inherent D
ata P

arallelism
 (perform

 a sim
ilar com

putation on m
any data objects sim

ultaneously).

O
ptim

ization opportunities (for com
piler designers).

R
eduction of program

 size.

T
his is an exam

ple of an array w
hich contains integer num

bers:

A
ssum

ing at the m
om

ent that the index (or subscript) starts at 1 then:

the first elem
ent of the array is 5 w

ith an index of 1

the second elem
ent of the array is 7 w

ith an index of 2

the last elem
ent of the array is 22 w

ith an index of 8

the first three elem
ents are 5, 7, 13 w

ith Indices of 1, 2 and 3 respectively and they form
 w

hat is know
n

as a section.

4.1.2 A
rray properties

T
he term

 R
ank (or alternatively called dim

ension) refers to the num
ber of subscripts needed to locate an

elem
ent w

ithin an array. A
 scalar variable has a rank of zero.

V
ector: A

n array w
ith a rank of one is called a vector.

M
atrix: A

n array w
ith a rank of 2 or greater is called a m

atrix

C
onsider again the follow

ing array:

T
his array represents a vector since it is one-dim

ensional.

C
onsider the follow

ing array:

T
his array represents a m

atrix since it is tw
o-dim

ensional.

T
he term

 B
ounds refers to the low

er subscript in each dim
ension. H

ence the vector above has a low
er

bound of 1 and a higher bound of 8, w
hereas the above m

atrix has 1 and 2 for the first dim
ension and 1

and 4 for the second dim
ension.

T
he term

 E
xtent refers to the num

ber of elem
ents in a dim

ension. H
ence the above vector has an extent

of 8, w
hereas the above m

atrix has an extent of 2 and 4 in each dim
ension.

T
he term

 S
hape is a vector containing the extents of an array. H

ence the above vector has a shape of [8]
w

hereas the m
atrix has a shape of [2,4].

T
he term

 S
ize refers to the total num

ber of elem
ents of an array, w

hich sim
ply is the product of extents.

T
he size of an array m

ay be zero but m
ore about this later. B

oth vector and m
atrix above have a size of

8.T
he term

 C
onform

ance refers to arrays that have the sam
e shape. T

his is a condition for array to array
operations. O

bviously an operation betw
een an array and a scalar satisfies the conform

ance criterion. In
such a case the scalar operation is repeated for all the elem

ents of the array, as show
n later.

4.2 Specifications

T
o specify an array the follow

ing attributes of the array m
ust be know

n:

T
he nam

e given to the array (e.g. S
tudent_m

ark). T
he nam

e given to the array is up to 31 alphanum
eric

characters including underscore but the first character m
ust be a letter.

T
he type of the elem

ents (e.g. integer). A
ll elem

ents m
ust be of the sam

e type and the type can be
integer, real, logical, character, or derived.

T
he dim

ensions of the array (e.g. 1 dim
ension). U

p to 7 dim
ensions are allow

ed

T
he low

er and upper bounds for each dim
ension (e.g 1 and 8). D

eclaring the low
er bound is optional. If

the low
er bound is not specified F

ortran90 assum
es that the index begins w

ith 1. N
otice that the type of

the bounds is alw
ays integer. T

he alternate and equivalent form
s used to declare an array are as follow

s:

t
y
p
e
,

D
I
M
E
N
S
I
O
N
(
b
o
u
n
d
)

[
,
a
t
t
r
]

:
:

n
a
m
e

t
y
p
e

[
,
a
t
t
r
]

:
:

n
a
m
e

(
b
o
u
n
d
)

w
here [,attr] allow

s for the declaration of other type attributes, if required.

T
he follow

ing declarations are equivalent. B
oth declare an integer array a w

ith 6 elem
ents; an array b

w
ith 10 real elem

ents and a logical 2-dim
ensional array nam

ed yes_no.

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
6
)

:
:

a

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
0
:
9
)

:
:

b

L
O
G
I
C
A
L
,

D
I
M
E
N
S
I
O
N
(
2
,
2
)

:
:

y
e
s
_
n
o

I
N
T
E
G
E
R

:
:

a
(
6
)

R
E
A
L

:
:

b
(
0
:
9
)

L
O
G
I
C
A
L

:
:

y
e
s
_
n
o
(
2
,
2
)

U
se the dim

ension attribute form
 w

hen several arrays of the sam
e bounds and type need to be declared.

U
se second form

 w
hen several arrays of the sam

e type but different bounds need to be declared. T
he

choice is influenced by the style follow
ed by the program

m
er but certain circum

stances m
ight dictate the

use of one form
 rather than another.

A
 m

ixture of the tw
o form

s in the sam
e program

 is allow
ed. S

om
e further exam

ples are show
n below

:

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
8
)

:
:

x
,
y

R
E
A
L
:
:

a
l
p
h
a
(
1
:
3
)
,

b
e
t
a
(
4
:
9
)

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
0
:
5
,
1
2
:
4
5
,
6
)

:
:

d
a
t
a

C
H
A
R
A
C
T
E
R
(
l
e
n
=
1
0
)

:
:

n
a
m
e
s
(
2
5
)

T
he first exam

ple declares tw
o arrays of the sam

e dim
ension and type, therefore the dim

ension attribute
form

 is em
ployed. T

he second exam
ple declares tw

o arrays of the sam
e type but different dim

ension
hence the array specification form

 is follow
ed. F

or the third and fourth exam
ples any of the tw

o form
s

could have been used. T
he fourth exam

ple declares an array w
hich has 25 elem

ents w
ith each elem

ent
having a character string of size 10.

It is possible to include arrays as com
ponents of a derived data type and to declare arrays of derived data

types, for exam
ple:

T
Y
P
E
(
p
o
i
n
t
)

R
E
A
L

:
:

p
o
s
i
t
i
o
n
(
3
)

T
Y
P
E
(
p
o
i
n
t
)

T
Y
P
E
(
p
o
i
n
t
)

:
:

o
b
j
e
c
t
(
1
0
)

T
he type point is com

prised of 3 real num
bers, w

hile the array object consists of 10 item
s of data, each

consisting of 3 real num
bers. C

om
ponents are accessed as follow

s:

o
b
j
e
c
t
(
1
)
%
p
o
s
i
t
i
o
n
(
1
)

!
p
o
s
i
t
i
o
n

1

o
b
j
e
c
t

1

o
b
j
e
c
t
(
7
)
%
p
o
s
i
t
i
o
n
(
2
:
)

!
p
o
s
i
t
i
o
n
s

2

a
n
d

3

o
b
j
e
c
t

7

o
b
j
e
c
t
(
4
)
%
p
o
s
i
t
i
o
n
(
:
)

!
p
o
s
i
t
i
o
n
s

1
,

2

a
n
d

3

o
b
j
e
c
t

4

o
b
j
e
c
t
(
1
:
5
)
%
p
o
s
i
t
i
o
n
(
1
)

!
i
l
l
e
g
a
l

o
b
j
e
c
t

n
o
t

a
r
r
a
y

s
e
c
t
i
o
n
.

N
ote that the array object cannot be used as an array section, although its com

ponents can (this is due to
the unconventional storage requirem

ents used by derived data types).

A
 third form

 is a m
ixture of the tw

o above, as show
n below

:

t
y
p
e
,

D
I
M
E
N
S
I
O
N
(
b
o
u
n
d
1
)

[
,
a
t
t
r
]

:
:

a
n
a
m
e
,

b
n
a
m
e
(
b
o
u
n
d
2
)

w
here anam

e takes the ‘default’ num
ber of elem

ents, but bnam
e takes another explicitly defined value.

T
his is still legal but avoid using it due to the confusion that m

ight arise.

4.3 A
rray Sections

O
ne is able to access individual elem

ents or sections rather than the w
hole array. Individual elem

ents

and sections of an array are uniquely identified through subscripts, one per rank.

4.3.1 Individual elem
ents

T
o access a single elem

ent of an array the nam
e of the array follow

ed by an integer value enclosed in
parentheses is needed. T

he integer value is the index of the elem
ent. F

or m
ulti-dim

ensional arrays a list
of integer values is required separated by a com

m
a.

array (index, [...])

a(5) refers to the fifth elem
ent of the array

b(4,2) refers to the elem
ent at the intersection of the 4th row

 and 2nd colum
n.

F
or above exam

ples assum
e that low

er bound is 1 and use the follow
ing declarations:

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
8
)

:
:
a

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
5
,
4
)

:
:
b

4.3.2 Sections

T
o access a section of an array you need the nam

e of the array follow
ed by tw

o integer values separated
by a colon enclosed in parentheses. T

he integer values represent the indices of the section required. F
or

m
ulti-dim

ensional arrays use a list of integer values separated by a com
m

a.

array ([low
er]:[upper]:[step], [...]) w

here low
er and upper default to the declared dim

ensions and step
defaults to 1.

a(3:5) refers to elem
ents 3, 4, 5 of the array

a(1:5:2) refers to elem
ents 1, 3, 5 of the array

b(1:3, 2:4) refers to elem
ents from

 row
s 1 to 3 and colum

ns 2 to 4.

U
sing colon: T

his is a facility that enables us to access w
hole or parts of colum

ns or row
s. F

or exam
ple,

b(:4) refers to all elem
ents of the fourth colum

n.

U
sing subscripts: F

or exam
ple, alpha(i,j) refers to the elem

ent at the intersection of ith row
 and jth

colum
n. S

ubscripts i,j are defined previously w
ithin the program

.

U
sing expressions: F

or exam
ple, alpha(2*k) refers to an elem

ent w
hose position is the result of the

m
ultiplication. T

he result of an expression m
ust be an integer w

ithin the declared bounds.

U
sing stride: F

or exam
ple, beta(3,1:7:2) refers to elem

ents 1,3,5,7 of the third row
., beta(1,2:11:2) refers

to elem
ents 2,4,6,8,10 of the first row

. T
his is a valid statem

ent despite that the upper bound of the
second dim

ension is 10.

4.4 V
ector Subscripts

T
his is a clever w

ay providing a shorthand facility for accessing particular elem
ents of a large array.

V
ector subscripts are integer expressions of rank 1 and take the form

 (/list/). C
onsider the follow

ing
exam

ple.

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
9
)

:
:

a

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
3
)

:
:

r
a
n
d
o
m

r
a
n
d
o
m
=
(
/
6
,
3
,
8
/
)

a
(
r
a
n
d
o
m
)
=
0
.
0

a
(
(
/
7
,
8
,
9
/
)
)
=
1
.
2

H
ere tw

o arrays have been declared, a w
ith size 9 and random

 w
ith size 3. T

he third statem
ent assigns

the values of 6, 3, and 8 to the three elem
ents of random

. W
hatever value existed beforehand now

 has
been overw

ritten. H
ence,

r
a
n
d
o
m
(
1
)
=
6

r
a
n
d
o
m
(
2
)
=
3

r
a
n
d
o
m
(
3
)
=
8

T
he fourth statem

ent uses random
 as an array of indices and assigns the value of 0.0 to the array

elem
ents of a. E

xpanding the left hand side w
e get

a
(
r
a
n
d
o
m
)
=
a
(
r
a
n
d
o
m
(
1
)
,
r
a
n
d
o
m
(
2
)
,
r
a
n
d
o
m
(
3
)
)
=
a
(
6
,
3
,
8
)

H
ence the third, sixth and eighth elem

ent of a are the ones being overw
ritten w

ith a zero value.

T
he fifth statem

ent dem
onstrates an alternative use of the vector subscript. H

ence the 7th, 8th and 9th
elem

ent of the array are assigned the value of 1.2

C
are m

ust be taken not to duplicate values in a vector subscript w
hen used in the L

H
S

 of an expression
as dem

onstrated w
ith the illegal fourth statem

ent below
.

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
5
)

:
:

a

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
3
)

:
:

l
i
s
t

l
i
s
t
=
(
/
2
,
3
,
2
/
)

a
(
l
i
s
t
)
=
(
/
1
.
1
,

1
.
2
,

1
.
3
/
)

!
i
l
l
e
g
a
l

e
l
e
m
e
n
t

2

s
e
t

t
w
i
c
e

4.5 A
rray storage

T
he physical storage: H

ow
 an array is stored in m

em
ory depends on the com

puter im
plem

entation.

T
he array elem

ent ordering: It is w
rong to assum

e that tw
o elem

ents of an array are next to each other
B

U
T

 conceptualise a linear sequence of the array elem
ents w

ith the first index changing first.

C
onsider the follow

ing exam
ple:

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
3
,

5
)

:
:

a

4.6 A
rray A

ssignm
ent

4.6.1 W
hole array assignm

ent

T
his is to be used w

hen the elem
ents of an array need to be assigned w

ith the sam
e value (scalar) or by

coping the values of another array. In the form
er the scalar is broadcasted to all the elem

ents of the
array. In the latter case the operands in the array expression m

ust be conform
able

C
onsider the follow

ing exam
ple:

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
1
0
0
)

:
:

a
,

b
,

c

R
E
A
L

:

d
(
1
0
,
1
0
)

=

0
.
0

b
=
2
*
a
+
4

a
=
2
.
0

c
=
b
*
a

c
=
d

T
he first assignm

ent involves an array expression on the right hand side. S
ince a and b are conform

able
it is a valid statem

ent. E
ach elem

ent of b takes the corresponding value of a m
ultiplied by 2 and adding a

4 to the product.

T
he second assignm

ent involves a scalar on the right hand side, hence there is autom
atic conform

ability.
E

ach elem
ent of a takes the value of 2.

T
he third assignm

ent involves an array product on the right hand side. S
ince a and b are conform

able
then their product can be evaluated. T

he product refers to elem
ent by elem

ent m
ultiplication. T

he result
is another array w

hich is conform
able w

ith c therefore each elem
ent of c takes the product of the

corresponding elem
ents in a and b.

T
he fourth assignm

ent is illegal because the tw
o arrays are not conform

able.

4.6.2 A
rray section assignm

ent

In case that sections of an array have to be assigned certain values conform
ing array sections m

ay
appear in the expressions.

C
onsider the follow

ing exam
ple:

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
1
0
)

:
:

a
l
p
h
a
,

b
e
t
a

R
E
A
L

:
:

g
a
m
m
a
(
2
0
)

a
l
p
h
a
(
1
:
5
)
=
2
.
0

a
l
p
h
a
(
1
:
1
0
:
2
)
=
b
e
t
a
(
1
:
5
)
/
6

a
l
p
h
a
(
2
:
1
0
)
=
a
l
p
h
a
(
1
:
9
)

g
a
m
m
a
(
1
1
:
2
0
)
=
b
e
t
a

T
he first assignm

ent sim
ply assigns the value of 2 to the first 5 elem

ents of alpha, the rest of the
elem

ents rem
ain intact.

T
he second assignm

ent involves tw
o conform

able array sections, hence it is a valid statem
ent. T

he
follow

ing assignm
ents are m

ade:

a
l
p
h
a
(
1
)
=
b
e
t
a
(
1
)
/
6

a
l
p
h
a
(
3
)
=
b
e
t
a
(
2
)
/
6

a
l
p
h
a
(
5
)
=
b
e
t
a
(
3
)
/
6

a
l
p
h
a
(
7
)
=
b
e
t
a
(
4
)
/
6

a
l
p
h
a
(
9
)
=
b
e
t
a
(
5
)
/
6

T
he third assignm

ent show
s a pow

erful operation using arrays w
here values are shifted autom

atically
and w

ithout the need of D
O

 loops. T
herefore, the 9 elem

ents of alpha starting from
 the second elem

ent
take the value of the first 9 elem

ent of alpha, so at the end of the process the first tw
o elem

ents of alpha
have the sam

e value.

T
he last assignm

ent dem
onstrates another im

portant concept. W
hereas beta and gam

m
a are not

conform
able the section used by gam

m
a satisfies the criterion so it is a valid statem

ent.

4.6.3 E
lem

ental intrinsic procedures

E
lem

ental procedures are specified for scalar argum
ents, but m

ay take conform
ing array argum

ents.

C
onsider the follow

ing exam
ple:

R
E
A
L
,

n
u
m

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
3
,
3
)

:
:

a

I
N
T
E
G
E
R

:
:
l
e
n
g
t
h
(
5
)

C
H
A
R
A
C
T
E
R
(
l
e
n
=
7
)

:
:

c
(
5
)

x
=
S
Q
R
T
(
n
u
m
)

a
=
S
Q
R
T
(
a
)

l
e
n
g
t
h
=
L
E
N
(

T
R
I
M
(
c
)

)

T
he first assignm

ent is betw
een tw

o scalars and assigns the square root of num
 to x.

T
he second assignm

ent involves the sam
e elem

ental intrinsic procedure but w
ith an array argum

ent.
H

ence, every elem
ent of a is substituted by the square root of the existing value.

T
he third assignm

ent finds the string length for each elem
ent of c and rejects any trailing blanks. H

ence,
if c(1) is ‘A

lexis ‘ the com
m

and ignores the trailing blank.

4.7 Z
ero-sized arrays

F
ortran 90 allow

s arrays to have zero size. T
his occurs w

hen the low
er bound is greater than the upper

bound. A
 zero-sized array is useful because it has no elem

ent values, holds no data, but is valid and
alw

ays defined. Z
ero-sized arrays allow

 the handling of certain situations w
ithout the need of extra code.

A
s an exam

ple consider the follow
ing situation:

I
N
T
E
G
E
R

:
:

a
(
5
)
=
(
/
1
,
2
,
1
,
1
,
3
/
)

a
(
1
:
c
o
u
n
t
(
a
r
r
=
=
1
)
)
=
0

a
(
1
:
c
o
u
n
t
(
a
r
r
=
=
1
)
)
=
0

T
he first statem

ent initialises a to 1 2 1 1 3 values.

T
he second statem

ent arr(1:count(arr=
=

1))=
0 w

ill change 1,2,1,1,3 to 0,0,0,1,3 since the original array
had 3 elem

ents w
ith the value of 1.

T
he third statem

ent arr(1:count(arr=
=

4))=
0 w

ill do nothing because it is a zero-sized array (low
er bound

is 1, higher bound is 0 since there are no elem
ents w

ith the value of 4). A
llow

ing for zero-sized arrays
m

eans that if the original array is em
pty or contains no elem

ents w
ith the required value the statem

ent
becom

es a do nothing statem
ent.

4.8 Initialising arrays

4.8.1 C
onstructors

T
his is to be used for 1-dim

ensional arrays that need to be assigned w
ith various values. A

 constructor is
a list enclosed in parentheses and back-slash. T

he general form
 is array =

 (/ list /) w
here list can be one

of the follow
ing:

a list of values of the appropriate type:

I
N
T
E
G
E
R

:
:

a
(
6
)
=
(
/
1
,
2
,
3
,
6
,
7
,
8
/
)

variable expression(s)

R
E
A
L

:
:

b
(
2
)
=
(
/
S
I
N
(
x
)
,
C
O
S
(
x
)
/
)

array expression(s)

I
N
T
E
G
E
R

:
:

c
(
5
)
=
(
/
0
,
a
(
1
:
3
)
,
4
/
)

im
plied D

O
 loops

R
E
A
L

:
:

d
(
1
0
0
)
=
(
/
R
E
A
L
(
i
)
,
i
=
1
,
1
0
0
/
)

T
he constructor can be used during declaration as show

n above or in a separate statem
ent but only the

latter form
 can be em

ployed to initialise an array w
ith constant values.

4.8.2 R
eshape

T
o be used for the initialisation or assignm

ent of m
ulti-dim

ensional arrays, i.e., arrays w
ith rank greater

than 1. It can be used on a declaration statem
ent or in a separate statem

ent. T
he form

at is

R
E
S
H
A
P
E

(
l
i
s
t
,

s
h
a
p
e

[
,
P
A
D
]

[
,
O
R
D
E
R
]
)

w
here list is a 1-dim

ensional array or constructor containing the data, and shape a 1-dim
ensional array

or vector subscript containing the new
 shape of the data.

T
he size of the array determ

ines the dim
ension of the new

 array. T
he elem

ents determ
ine the extent of

each dim
ension. C

onsider the follow
ing exam

ple:

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
2
,
3
)

:
:

a

a
=
R
E
S
H
A
P
E
(
(
/
i
,
i
=
0
,
5
/
)
,
(
/
3
,
2
/
)
)

T
he last statem

ent w
ill generate a rank 2 array w

ith extents 3 and 2.

4.8.3 D
A

T
A

 statem
ent

U
se the D

A
T

A
 w

hen other m
ethods are tedious and/or im

possible. F
or exam

ple for m
ore than one array

initialisation or for array section initialisation.

T
he form

at is:

D
A
T
A

v
a
r
i
a
b
l
e

/

l
i
s
t

/

.
.
.

F
or exam

ple see follow
ing:

I
N
T
E
G
E
R

:
:

a
(
4
)
,

b
(
2
,
2
)
,

c
(
1
0
)

D
A
T
A

a
/
4
,
3
,
2
,
1
/

D
A
T
A

a
/
4
*
0
/

D
A
T
A

b
(
1
,
:
)
/
0
,
0
/

D
A
T
A

b
(
2
,
:
)
/
1
,
1
/

D
A
T
A

(
c
(
i
)
,
i
=
1
,
1
0
,
2
/
5
*
1
/

D
A
T
A

(
c
(
i
)
,
i
=
2
,
1
0
,
2
)
/
5
*
2
/

T
he first D

A
T

A
 statem

ent uses a list by value w
here the value for each array elem

ent is explicitly
declared.

T
he second D

A
T

A
 statem

ent uses a list by w
hole array w

here 4 is the size of the array and 0 is the
required value w

hich is repeated 4 tim
es. D

o not confuse this w
ith the m

ultiplication operator.

T
he third and fourth statem

ents use a list by section w
here the first row

 takes 0 0 and the second row
takes the values of 1 1.

T
he last tw

o statem
ents use a list by im

plied D
O

 loops w
here the odd indexed elem

ents are assigned the
value 1 and the even indexed elem

ents take the value of 2.

R
em

em
ber that:

a D
A

T
A

 statem
ent can split in m

ore than one line but each line m
ust have a D

A
T

A
 keyw

ord.

it can not be used for initialisation of arrays w
ith constant values.

m
ay be used for other variables as w

ell as arrays.

4.9 W
H

E
R

E

T
o be used w

hen the value of an elem
ent depends on the outcom

e of som
e condition. It takes a statem

ent
form

 or a construction form

T
he W

H
E

R
E

 statem
ent allow

s a single array assignm
ent only if a logical condition is true. T

he syntax is
as follow

s:

W
H
E
R
E

(
c
o
n
d
i
t
i
o
n
)

s
t
a
t
e
m
e
n
t

C
onsider the follow

ing situation:

I
N
T
E
G
E
R

:
:

a
(
2
,
3
,
4
)

W
H
E
R
E
(
a
<

0
)

a
=
0

W
H
E
R
E
(
a
*
3
>
1
0
)

a
=
9
9
9

T
he first W

H
E

R
E

 statem
ent m

eans that all negative values of‘a are set to zero, the non-negative values
of a rem

ain intact.

T
he second W

H
E

R
E

 statem
ent m

eans that elem
ents of a are set to 999 if the product is greater than ten.

T
he W

H
E

R
E

 construct allow
s array assignm

ent(s) only if a logical condition is true, and alternative
array assignem

ent(s) if false. T
he syntax is as follow

s:

W
H
E
R
E

(
c
o
n
d
i
t
i
o
n
)

b
l
o
c
k
1

[
E
L
S
E
W
H
E
R
E

b
l
o
c
k
2
]

E
N
D
W
H
E
R
E

E
xam

ine the follow
ing section of a program

.

I
N
T
E
G
E
R

:
:

b
(
8
,
8
)

W
H
E
R
E

(
b
<
=
0
)

b
=
0

E
L
S
E
W
H
E
R
E

b
=
1
/
b

E
N
D
W
H
E
R
E

S
o all negative valued elem

ents of ‘b’ are set to zero and the rest take their reciprocal value.

4.10 A
rray intrinsic functions

S
everal intrinsic procedures are available in F

ortran90. T
heir role is to save tim

e and effort w
hen

program
m

ing. T
hey can be divided into 7 sections for

vector and m
atrix m

ultiplication

array reduction

array inquiry

array construction

array reshape

array m
anipulation

array location

A
 sam

ple w
ill now

 be presented.

4.10.1 E
xam

ple of reduction

A
L
L

(
c
o
n
d
i
t
i
o
n
,

[
D
I
M
]
)

determ
ines w

hether all elem
ents along a given dim

ension (D
IM

) satisfy the condition. T
he outcom

e is
either a scalar (if dim

ension part is m
issing) or an array (if dim

ension part is declared) of logical type.

L
O
G
I
C
A
L

:
:

t
e
s
t
,

t
e
s
t
2
(
2
)
,

t
e
s
t
3
(
3
)

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
3
,
2
)

:
:

a

a

=

(
/
5
,
9
,
6
,
1
0
,
8
,
1
2
/
)

.
.
.

t
e
s
t
=
A
l
l
(
a
>
5
)

t
e
s
t
2
=
A
l
l
(
a
>
5
,

D
I
M
=
1
)

!
f
a
l
s
e
,

t
r
u
e
,

t
r
u
e

t
e
s
t
3
=
A
l
l
(
a
>
5
,

D
I
M
=
2
)

!
f
a
l
s
e
,

t
r
u
e

T
he first statem

ent gives false since the first elem
ent is equal to 5 and not greater.

T
he second statem

ent gives [false,true,true] since the first elem
ent of the first row

 is equal to 5 and not
greater, w

hereas both elem
ents on the rem

aining tw
o row

s are greater than 5.

T
he third statem

ent gives [false,true] since first elem
ent of the first colum

n is equal to 5 and not greater,
w

hereas all 3 elem
ents on the rem

aining colum
n are greater than 5.

4.10.2 E
xam

ple of inquiry

S
I
Z
E
(
a
r
r
a
y
,

[
D
I
M
]
)

returns the extent of an array for the specified dim
ension (D

IM
). If the dim

ension part is m
issing it

returns the total num
ber of elem

ents in the array.

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
3
,
2
)

:
:

a

n
u
m
=
S
i
z
e
(
a
)

n
u
m
=
S
i
z
e
(
a
,
D
I
M
=
1
)

n
u
m
=
S
i
z
e
(
a
,
D
I
M
=
2
)

T
he first statem

ent gives 6, the second gives 2, and the last gives 3.

4.10.3 E
xam

ple of construction

S
P
R
E
A
D
(
a
r
r
a
y
,

D
I
M
,

N
C
O
P
I
E
S
)

replicates the given array by adding a dim
ension, w

here D
IM

 stands for dim
ension and N

C
O

P
IE

S
 for

num
ber of copies.

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
3
)

:
:

a
=
(
/
2
,
3
,
4
/
)

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
3
,
3
)

:
:

b
,
c

b
=
S
P
R
E
A
D
(
a
,

D
I
M
=
1
,

N
C
O
P
I
E
S
=
3
)

c
=
S
P
R
E
A
D
(
a
,

D
I
M
=
2
,

N
C
O
P
I
E
S
=
3
)

T
he first S

P
R

E
A

D
 statem

ent replicates array a three tim
es on the row

 dim
ension. T

he second S
P

R
E

A
D

statem
ent replicates array a three tim

es on the colum
n dim

ension.

4.10.4 E
xam

ple of location

M
A
X
L
O
C
(
a
r
r
a
y
,

[
m
a
s
k
]
)

determ
ines the location of the first encountered elem

ent of the given array w
hich has the m

axim
um

value and satisfies the optional m
ask.

R
E
A
L

:
:

a
(
5
)

a
=
(
/
2
,
8
,
5
,
3
,
4
/
)

n
u
m

=

M
A
X
L
O
C
(

a

)

n
u
m

=

M
A
X
L
O
C
(

a
,

M
A
S
K
=
a
<
5

)

n
u
m

=

M
A
X
L
O
C
(

a
(
2
:
4
)

)

T
he first M

A
X

L
O

C
 statem

ent returns 2 since this is the position of the highest num
ber on the list.

T
he second M

A
X

L
O

C
 statem

ent returns 5 since this is the position of the highest num
ber on the list

w
hen num

bers greater than 5 are excluded.

T
he third M

A
X

L
O

C
 statem

ent returns the value 1 since this is the position of the highest valued elem
ent

in the array section. N
ote that it is w

orth rem
em

bering that elem
ents in array section statem

ents are
renum

bered w
ith one as the low

er bound in each dim
ension.

4.11 E
xercises

1.
(a) A

 user enters the follow
ing elem

ents to a (3x3) array: 1, 2, 5,8, 6, 7, 5, 0 , 0. W
hat is the value

of elem
ent(2,1); (3,2); (1,2); (2,3).

(b) A
n array w

ith rank 7 and extent of 5 in each dim
ension, how

 m
any elem

ents does it have?

(c) A
n array w

ith rank 3 and extents of 10, 5 and 3, how
 m

any elem
ents does it have?

2.
G

iven the follow
ing declarations:

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
1
:
1
0
,
1
:
2
0
)

:
:

a

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
1
0
,
-
5
:
1
0
)

:
:

b

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
0
:
5
,
1
:
3
,
6
:
9
)

:
:

c

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
1
:
1
0
,
2
:
1
5
)

:
:

d

W
hat is the rank, size, bounds, and extents of a,b,c and d?

3.
D

eclare an array for representing a noughts and crosses board (a board of 3x3 squares, indicating
an em

pty square w
ith false, otherw

ise w
ith true)

4.
G

iven the follow
ing declarations:

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
-
1
:
5
,
3
,
8
)

:
:

a
l
p
h
a

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
-
3
:
3
,
0
:
2
,
-
7
:
0
)

:
:

b
e
t
a

A
re the tw

o arrays conform
able?

5.
G

iven the follow
ing array declaration

R
E
A
L
:

a
(
0
:
5
,
3
)

w
hich of the follow

ing references are legal?

a
(
2
,
3
)
,

a
(
6
,
2
)
,

a
(
0
,
3
)
,

a
(
5
,
6
)
,

a
(
0
,
0
)

6.
W

hat is the array elem
ent order of the follow

ing array?

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
-
1
:
1
,
2
,
0
:
1
)

:
:

a
l
p
h
a

7.
D

eclare and initialise the array beta w
ith the follow

ing elem
ents

5

6

4

2

0

5

8.
D

eclare and initialise the array gam
m

a w
ith the follow

ing elem
ent values: 2.1, 6.5, 4.3, 8.9, 12.5

9.
D

eclare and initialise the 2-rank array delta w
hich has the follow

ing elem
ents

0

0

0

1

0

0

1

1

0

1

1

1

10.
U

sing a vector subscript declare an array zeta w
ith 100 elem

ents and place the value 8 to the 1st,
2nd, 10th, 34th, 99th and 100th elem

ent.

11.
T

he follow
ing array declarations are given:

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
5
0
)

:
:

a
l
p
h
a

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
6
0
)

:
:

b
e
t
a

w
hich of the follow

ing statem
ents are valid?

a
l
p
h
a
=
b
e
t
a

a
l
p
h
a
(
3
:
3
2
)
=
b
e
t
a
(
1
:
6
0
:
2
)

a
l
p
h
a
(
1
0
:
5
0
)
=
b
e
t
a

a
l
p
h
a
(
1
0
:
4
9
)
=
b
e
t
a
(
2
0
:
5
9
)

a
l
p
h
a
=
b
e
t
a
(
1
0
:
5
9
)

a
l
p
h
a
(
1
:
5
0
:
2
)
=
b
e
t
a

b
e
t
a
=
a
l
p
h
a

b
e
t
a
(
1
:
5
0
)
=
a
l
p
h
a

12.
Initialise an array of rank one and extend 10 w

ith the values 1 to 10 using

(a) a constructor w
ith the list of values

(b) a constructor w
ith the D

o L
oop

13.
A

n array of rank one and extent 50 has been declared and needs to be initialised w
ith the values o f

-1 (first elem
ent), 1 (last elem

ent) and 0 (rest of elem
ents). W

hich of the follow
ing constructor

structures are valid (if any)?

a
l
p
h
a
(
/
-
1
,
(
0
,
i
=
2
,
4
9
)
,
1
/
)

a
l
p
h
a
(
(
/
-
1
,
(
0
,
i
=
1
,
4
8
)
,
1
/
)

a
l
p
h
a
(
(
/
-
1
,
(
0
,
i
=
3
7
,
8
4
)
,
1
/
)

a
l
p
h
a
(
/
-
1
,
4
8
*
0
,
1
/
)

14.
W

hat are the values of the array delta w
hich has been declared and initialised as follow

s:

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
2
,
2
)

:
:
d
e
l
t
a
=
R
e
s
h
a
p
e
(
(
/
(
(
1
0
*
i
+
j
,
i
=
1
,
2
)
,
j
=
1
,
2
)
/
)
,

(
/
2
,
2
/
)
)

15.
If the array beta has been declared as

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
1
0
)

:
:

b
e
t
a

w
hat elem

ents are referenced by each of the follow
ing statem

ents?

b
e
t
a
(
2
:
8
:
3
)

b
e
t
a
(
1
:
1
0
)

b
e
t
a
(
3
:
5
)

b
e
t
a
(
:
9
)

b
e
t
a
(
:
)

b
e
t
a
(
:
:
4
)

b
e
t
a
(
3
:
1
0
:
0
)

16.
If the array gam

m
a has been declared as

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
3
,
4
)

:

g
a
m
m
a

w
hat elem

ents are referenced by each of the follow
ing statem

ents?

g
a
m
m
a
(
2
,
:
)

g
a
m
m
a
(
:
,
3
)

g
a
m
m
a
(
2
,
3
:
4
)

g
a
m
m
a
(
:
:
2
,
:
)

17.
If alpha has been declared and initialised as follow

s

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
-
5
:
0
)

:
:

a
l
p
h
a
=
(
/
2
,
1
8
,
5
,
3
2
,
4
0
,
0
/
)

w
hat is the result of

M
A
X
L
O
C
(
a
l
p
h
a
)

M
A
X
L
O
C
(
a
l
p
h
a
,
M
A
S
K
=
a
l
p
h
a
/
=
4
0
)

18.
D

eterm
ine w

hat the follow
ing array constructor does and then sim

plify the constructor:
(/((A

(i)+
10.34,j=

1,1000),i=
1,1000) /)

19.
W

rite a W
H

E
R

E
 statem

ent w
hich only changes the sign of the elem

ents of array alpha that are
negative.

20.
W

rite a W
H

E
R

E
 statem

ent w
hich replicates every non-zero elem

ent of an array beta by its
reciprocal and every zero elem

ent by 1.

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

5 L
ogical &

 com
parison expressions

5.1 R
elational operators

R
ecall that a logical variables denoted w

ith the keyw
ord L

O
G

IC
A

L
, and it can take tw

o logical
values(.T

R
U

E
. or .F

A
L

S
E

.) w
hich are used to record B

oolean inform
ation about the variable.

R
ecall that declaring logical variables is in the follow

ing form

L
O
G
I
C
A
L

:
:

g
u
e
s
s
,

d
a
t
e

and assigning a logical variable is in the follow
ing form

g
u
e
s
s

=

.
t
r
u
e
.

d
a
t
e

=

(
t
o
d
a
y
_
d
a
t
e
=
=
5
)

if today_date has previously been assigned a value and that value is 5 then date holds .T
R

U
E

., otherw
ise

.F
A

L
S

E
. In this section the logical and com

parison operators are introduced and how
 to perform

com
parisons is illustrated.

M
ore E

xam
ples:

5

<

6

!
T
r
u
e

5

>

6

!
F
a
l
s
e

5

=
=

6

!
F
a
l
s
e

5

/
=

6

!
T
r
u
e

5

<
=

6

!
T
r
u
e

5

>
=

6

!
F
a
l
s
e

a
g
e

>

3
4

!
a

v
a
r
i
a
b
l
e

c
o
m
p
a
r
e
d

w
i
t
h

a

c
o
n
s
t
a
n
t

a
g
e

/
=

m
y
_
a
g
e

!
t
w
o

v
a
r
i
a
b
l
e
s

a
r
e

c
o
m
p
a
r
e
d

4
5

=
=

y
o
u
r
_
a
g
e

!
a

v
a
r
i
a
b
l
e

c
a
n

a
p
p
e
a
r

i
n

a
n
y

s
i
d
e

n
a
m
e
=

’
S
m
i
t
h
’

!
c
h
a
r
a
c
t
e
r
s

a
r
e

a
l
l
o
w
e
d

a
l
p
h
a
(
3
)

/
=

3
3

!
a
r
r
a
y

e
l
e
m
e
n
t
s

a
r
e

a
l
l
o
w
e
d

(
a
g
e
*
3
)

/
=

y
o
u
r
_
a
g
e

!
e
x
p
r
e
s
s
i
o
n
s

a
r
e

a
l
l
o
w
e
d

5.2 L
ogical expressions

T
he .A

N
D

. logical operator is used to link expressions w
hich evaluate to T

R
U

E
 only if all given

expressions are true, otherw
ise evaluates to F

A
L

S
E

. C
onsider the follow

ing exam
ple: (salary*0.4) .and.

(age<
45). T

here are tw
o sub-expressions here. If both are true the expression evaluates to true, otherw

ise
the value false is assigned.

T
he .O

R
. logical operator is used to link expressions w

hich evaluate to T
R

U
E

 only if any of the
expressions is true, otherw

ise evaluates to F
A

L
S

E
. C

onsider the follow
ing exam

ple: (nam
e=

’D
im

itris’)
.or. (nam

e=
’Jam

es’) .or. (nam
e=

’Jim
’). A

gain if the user enters any of the nam
es the expression is given

the true value, otherw
ise the value false is assigned.

T
he .N

O
T

. logical operator is used to inverts the logical value of an expression. F
or exam

ple true
becom

es false and vice versa. T
he form

 is: .not. (salary*0.4) w
here the statem

ent enclosed by brackets is
assigned a value w

hich in turn is inverted.

T
he .E

Q
V

. logical operator is used to link expressions w
hich evaluate to T

R
U

E
 only if all expressions

have the sam
e logical value (can be true or false), otherw

ise evaluates to F
A

L
S

E
. F

or exam
ple:

(5*3>
12) .E

Q
V

. (6*2>
8) evaluates to T

R
U

E
 because both sub-expressions take the true value.

T
he .N

E
Q

V
. logical operator is used to link expressions w

hich evaluate to T
R

U
E

 only if at least one of
the expressions has a different logical value than the others, otherw

ise evaluates to F
A

L
S

E
. F

or
exam

ple: (5*3>
12) .N

E
Q

V
. (6*2>

13) evaluates to T
R

U
E

 because the first sub-expression is true
w

hereas the second is false.

C
om

paring real &
 integer converts the integer to its real equivalent C

om
paring real &

 real m
ust be

perform
ed w

ith caution because of rounding errors resulting from
 arithm

etic operations. It is advisable
to test their difference rather than their actual values. F

or instance, (a-b<
0.005) is better than (a=

=
b).

5.3 C
haracter C

om
parisons

C
ertain rules have to be obeyed w

hen com
paring characters or character strings . (Is A

 greater than B
 ?)

W
hen one of the character strings has a shorter length, it is filled w

ith blanks (right side) T
he

com
parison is character by character

T
he com

parison starts from
 the left side T

he com
parison term

inates either w
hen a difference has been

found or the end of the string has been reached if no difference is found the character strings are the
sam

e, otherw
ise term

inates w
ith the first encountered difference. C

om
paring character strings depends

on the collating sequence of the m
achine used. T

he collating sequence m
ust obey the follow

ing rules.

A
 <

 B
 <

 ... <
 Z

a <
 b <

 ... <
 z

0 <
 1 <

 2 ... <
 9

digits before A
 or after Z

; or before a or after z blank before letters or digits R
est of characters have no

defined position, m
achine dependant N

ote that standard does not define if upper case characters com
e

before or after low
er case characters

T
he earliest a character com

es in the collating sequence the sm
aller value it has. H

ence, a blank is
alw

ays sm
aller than a digit or a letter. A

n exam
ple:

Is ’A
lexis’ >

 than ’A
lex’?

T
he right expression is shorter, hence ’A

lex’ becom
es ’A

lex ’ T
he first 4 letters are the sam

e - no
difference has been found so search continues character i is greater than blank - com

parison term
inates

and the answ
er is yes because the blank com

es before letters! (the earlier a character com
es in the

collating sequence the sm
aller value it has)

5.4 P
ortability Issues

C
ollating sequence is m

achine dependable.

Intrinsic functions for string com
parison are available w

hich are based on the universal A
S

C
II collating

sequence:

L
G
T
(
s
t
r
i
n
g
1
,

s
t
r
i
n
g
2
)

!
g
r
e
a
t
e
r

t
h
a
n

L
G
E
(
s
t
r
i
n
g
1
,

s
t
r
i
n
g
2
)

!
g
r
e
a
t
e
r

t
h
a
n

o
r

e
q
u
a
l

t
o

L
L
E
(
s
t
r
i
n
g
1
,

s
t
r
i
n
g
2
)

!
l
e
s
s

t
h
a
n

o
r

e
q
u
a
l

t
o

L
L
T
(
s
t
r
i
n
g
1
,

s
t
r
i
n
g
2
)

!
l
e
s
s

t
h
a
n

B
ecause the collating sequence m

ight differ from
 m

achine to m
achine one can use one of the above

intrinsic functions either to com
pare strings. M

ore intrinsic functions are available. F
or exam

ple intrinsic
functions that identify the position of a character in a sequence in the A

S
C

II or m
achine collating

sequence. S
om

e of them
 are presented through the exercise sections.

5.5 E
xercises

1.
G

iven that

I
N
T
E
G
E
R

:
:

a
g
e
=
3
4
,

o
l
d
=
9
2
,

y
o
u
n
g
=
1
6

w
hat is the value of the follow

ing expressions?

a
g
e

/
=

o
l
d

a
g
e

>
=

y
o
u
n
g

a
g
e

=

6
2

(
a
g
e
=
=
5
6

.
a
n
d
.

o
l
d
/
=
9
2
)

(
a
g
e
=
=
5
6

.
o
r
.

o
l
d
/
=
9
2
)

(
a
g
e
=
=
5
6

.
o
r
.

(
.
n
o
t
.
(
o
l
d
/
=
9
2
)
)
)

.
n
o
t
.

(
a
g
e
=
=
5
6

.
o
r
.

o
l
d
/
=
9
2
)

2.
W

hat are the values of the follow
ing expressions?

1
5
>
2
3

(
1
2
+
3
)

<
=
1
5

(
2
>
1
)

.
a
n
d
.

(
3
<
4
)

(
3
>
2
)

.
a
n
d
.

(
1
+
2
)
<
3

.
o
r
.

(
4
<
=
3
)

(
3
>
2
)

.
a
n
d
.

(
1
+
2
)
<
3

.
e
q
v
.

(
4
<
=
3
)

3.
Is this true?

(
a
<
b

.
a
n
d
.

x
<
y
)

.
o
r
.

(
a
>
=
b

.
a
n
d
.

x
>
=
y
)

=

(
a
<
b

.
e
q
v
.

x
<
y
)

R
e-w

rite the follow
ing expressions using different logical operators

.
n
o
t
.

(
a
<
b

.
a
n
d
.

b
<
c
)

.
n
o
t
.

(
a
<
b

.
e
q
v
.

x
<
y
)

4.
D

eterm
ine the logical value of each expression

"
A
d
a
m
"

>

"
E
v
e
"

"
A
D
A
M
"

>

"
A
d
a
m
"

"
M
1
"

<

"
M
2
5
"

"
v
e
r
s
i
o
n
_
1
"

>

"
v
e
r
s
i
o
n
-
2
"

"

m
o
r
e
"

<

"
m
o
r
e
"

L
G
T
(
"
A
d
a
m
"
,
"
a
d
a
m
"
)

L
L
T
(
"
M
e
"
,
"
m
e
"
)

L
L
T
(
"
m
e
"
,
"
m
e
?
"

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

6 C
ontrol statem

ents

F
ortran 90 has three m

ain types of control construct:

IFC
A

S
E

D
O

E
ach construct m

ay be ‘nested’ one w
ithin another, and m

ay be nam
ed in order to im

prove readability of
a program

.

6.1 C
onditional statem

ents

In everyday life w
e m

ake decisions based on certain circum
stances. F

or instance after listening to the
w

eather forecast one m
ight take an um

brella. T
he decision to take an um

brella depends on w
hether it is

raining or not. S
im

ilarly, a program
 m

ust be able to select an appropriate action according to arising
circum

stances. F
or instance, to take different actions based on experim

ental results.

6.1.1 F
low

 control

S
election and routing control through the appropriate path of the program

 is a very pow
erful and useful

operation. F
ortran90 provides tw

o m
echanism

s w
hich enable the program

m
er to select alternative

action(s) depending on the outcom
e of a (logical) condition.

T
he IF

 statem
ent and construct.

T
he select case construct, C

A
S

E
.

6.1.2 IF
 statem

ent and construct

T
he sim

plest form
 of the IF

 statem
ent is a single action based on a single condition:

I
F
(

e
x
p
r
e
s
s
i
o
n

)

s
t
a
t
e
m
e
n
t

O
nly if expression (a logical variable or expression) has the value .T

R
U

E
. is statem

ent executed. F
or

exam
ple:

I
F
(

x
<
0
.
0

)

x
=
0
.
0

H
ere, if x is less than zero then it is given a new

 value, otherw
ise x retains it’s previous value. T

he IF
statem

ent is analogous to phrases like ‘if it is raining, take an um
brella’.

T
he structure of an IF

 construct depends on the num
ber of conditions to be checked, and has the

follow
ing general form

:

[
n
a
m
e
:
]

I
F

(
e
x
p
r
e
s
s
i
o
n
1
)

T
H
E
N

b
l
o
c
k
1

E
L
S
E
I
F

(
e
x
p
r
e
s
s
i
o
n
2
)

T
H
E
N

[
n
a
m
e
]

b
l
o
c
k
2

.
.
.

[
E
L
S
E

[
n
a
m
e
]

b
l
o
c
k
]

E
N
D
I
F

[
n
a
m
e
]

W
here expression# is a logical variable or expression.

T
he construct is used w

hen a num
ber of statem

ents depend on the sam
e condition. F

or exam
ple, ‘if it

rains then phone for a taxi and take an um
brella’. T

his tim
e the ‘then’ part is required. N

otice that an
E

N
D

 IF
 (or E

N
D

IF
) part is required to indicate the end of the selection process. If it is raining the block

of actions are executed and control passes to the next statem
ent after E

N
D

 IF
, otherw

ise the block of
actions are skipped and control passes to the next statem

ent after E
N

D
 IF

.

A
 m

ore com
plex situation is w

hen one w
ants to perform

 alternative actions depending on the condition.
F

or instance, both previous exam
ples do not tell us w

hat to do w
hen it is not raining. T

he rules above
can now

 be rephrased as: if it rains then phone taxi and take um
brella else w

alk.

N
otice the use of the else part. T

he action-block parts m
ay contain a single or m

ore actions. T
he else

part covers every other eventuality: sunshine, snow
ing etc. T

he passing of control follow
s the sam

e rules
as m

entioned above.

T
here are situations though that alternative actions have to be taken depending on the value the

condition takes. F
or instance, one m

ight w
ant to perform

 different action if it rains or snow
s or the sun is

out. F
or exam

ple, if it is raining then phone taxi, take um
brella, else if it is snow

ing then stay at hom
e,

else if the sun is out then go to park, else w
alk. N

otice the use of the E
L

S
E

IF
 part. T

he E
L

S
E

 part acts as
a default again in order to cover other eventualities. T

he sam
e rules concerning passing of control apply.

T
he form

 can be used in a num
ber of w

ays. F
or instance, m

ultiple E
L

S
E

IF
s can appear and/or the E

L
S

E
branch can be om

itted and/or m
ore IF

 constructs m
ight follow

 E
L

S
E

IF
 or E

L
S

E
.

IF
 constructs can be labelled. N

am
ing constructs can be useful w

hen one is nested inside another, this
kind of labelling m

akes a program
 easier to understand, for exam

ple:

o
u
t
e
r
:

I
F
(

x
,
0
.
0

)

T
H
E
N

.
.
.

E
L
S
E

o
u
t
e
r

i
n
n
e
r
:

I
F
(

y
<
0
.
0

)

T
H
E
N

.
.
.

E
N
D
I
F

i
n
n
e
r

E
N
D
I
F

o
u
t
e
r

6.1.3 SE
L

E
C

T
 C

A
SE

 construct

T
he S

E
L

E
C

T
 C

A
S

E
 construct provides an alternative to a series of repeated IF

 ... T
H

E
N

 ... E
L

S
E

 IF
statem

ents. T
he general form

 is:

[
n
a
m
e
:
]

S
E
L
E
C
T

C
A
S
E
(

e
x
p
r
e
s
s
i
o
n

)

C
A
S
E
(

v
a
l
u
e

)

[
n
a
m
e
]

b
l
o
c
k

.
.
.

[
C
A
S
E

D
E
F
A
U
L
T

b
l
o
c
k
]

E
N
D

S
E
L
E
C
T

[
n
a
m
e
]

T
he result of expression m

ay be of type character, logical or integer; value m
ust be of the sam

e type as
the result of expression and can be any com

bination of:

A
 single integer, character, or logical depending on type.

m
in: any value from

 a m
inim

um
 value upw

ards.

:m
ax any value from

 a m
axim

um
 value dow

nw
ards.

m
in : :m

ax any value betw
een the tw

o lim
its.

C
A

S
E

 D
E

F
A

U
L

T
 is optional and covers all other possible values of the expression not already covered

by other C
A

S
E

 statem
ents.

F
or exam

ple:

I
N
T
E
G
E
R

:
:

m
o
n
t
h

s
e
a
s
o
n
:

S
E
L
E
C
T

C
A
S
E
(

m
o
n
t
h

)

C
A
S
E
(
4
,
5
)

W
R
I
T
E
(
*
,
*
)

‘
S
p
r
i
n
g
’

C
A
S
E
(
6
,
7
)

W
R
I
T
E
(
*
,
*
)

‘
S
u
m
m
e
r
’

C
A
S
E
(
8
:
1
0
)

W
R
I
T
E
(
*
,
*
)

‘
A
u
t
u
m
n
’

C
A
S
E
(
1
1
,
1
:
3
,
1
2
)

W
R
I
T
E
(
*
,
*
)

‘
W
i
n
t
e
r
’

C
A
S
E

D
E
F
A
U
L
T

W
R
I
T
E
(
*
,
*
)

‘
n
o
t

a

m
o
n
t
h
’

E
N
D

S
E
L
C
E
T

s
e
a
s
o
n

T
he above exam

ple prints a season associated w
ith a given m

onth. If the value of the integer m
onth is

not in the range 1-12 the default case applies and the error m
essage ‘not a m

onth’ is printed, otherw
ise

one of the C
A

S
E

 statem
ents applies. N

otice that there is no preferred order of values in a C
A

S
E

statem
ent.

6.1.4 G
O

T
O

T
he G

O
T

O
 statem

ent can be used to transfer control to another statem
ent, it has the form

:

G
O
T
O

l
a
b
e
l

T
he G

O
T

O
 statem

ent sim
ply transfers control to the statem

ent w
ith the corresponding label. F

or
exam

ple:

.
.
.

I
F
(

x
<
1
0

)

G
O
T
O

1
0

.
.
.

1
0

S
T
O
P

T
he G

O
T

O
 statem

ent should be avoided w
here ever possible, program

s containing such statem
ents are

notoriously hard to follow
 and m

aintain.

6.2 R
epetition

A
n im

portant feature of any program
m

ing language is the ability to repeat a block of statem
ents. F

or
exam

ple, converting a character from
 upper to low

er case (or visa versa) can be done in a single
executable statem

ent. In order to convert several characters (in say a w
ord or sentence) one has to either

repeat the statem
ent or re-execute the program

. U
sing the repetition (or iteration) construct it is possible

to restructure the program
 to repeat the sam

e statem
ent and convert the required num

ber of characters.

6.2.1 D
O

 construct

In F
ortran 90 it is the D

O
 loop (or construct) w

hich enables the program
m

er to repeat a a block of
statem

ents. T
he D

O
 construct has the general form

:

[
n
a
m
e
:
]

D
O

[
c
o
n
t
r
o
l

c
l
a
u
s
e
]

b
l
o
c
k

E
N
D

D
O

[
n
a
m
e
]

T
he D

O
 construct m

ay take tw
o form

s:

A
 count controlled D

O
 loop.

A
 ‘forever’ D

O
 loop.

A
 count controlled loop uses a control clause to repeat a block of statem

ents a predefined num
ber of

tim
es:

[
n
a
m
e
:
]

D
O

c
o
u
n
t

=

s
t
a
r
t
,

s
t
o
p

[
,
s
t
e
p
]

b
l
o
c
k

E
N
D

D
O

[
n
a
m
e
]

T
he control clause is m

ade up of the follow
ing:

count is an integer variable and is used as the ’control’.

start is an integer value (or expression) indicating the initial value of count.

stop is an integer value (or expression) indicating the final value of count.

step is an integer value (or expression) indicating the increm
ent value of count. T

he step is
optional and has a default value of 1 if om

itted.

O
n entering the loop count w

ill take the value start, the second tim
e round (after executing the

statem
ents in block) count w

ill have the value start+
step (or start+

1 if step is m
issing) and so on until the

last iteration w
hen it w

ill take the value finish (or an integer value no greater than stop). T
he num

ber of
tim

es the statem
ents w

ill be executed can be calculated from
:

If stop is sm
aller than start and step is positive then count w

ill take the value zero and the statem
ent(s)

w
ill not be executed at all. T

he value of count is not allow
ed to change w

ithin the loop.

F
or exam

ple:

a
l
l
:

D
O

i
=
1
,
1
0

W
R
I
T
E
(
6
,
*
)

i

!
w
r
i
t
e

n
u
m
b
e
r
s

1

t
o

1
0

E
N
D

D
O

a
l
l

e
v
e
n
:

D
O

j
=
1
0
,
2
,
-
2

W
R
I
T
E
(
6
,
*
)

j

!
w
r
i
t
e

e
v
e
n

n
u
m
b
e
r
s

1
0
,
8
,
6
,
4
,
2

E
N
D

D
O

e
v
e
n

In the absence of a control clause the block of statem
ents is repeated indefinitely.

[
n
a
m
e
:
]

D
O

b
l
o
c
k

E
N
D

D
O

[
n
a
m
e
]

T
he block of statem

ents w
ill be repeated forever, or at least until som

ebody stops the program
. In order

to term
inate this type of loop the program

m
er m

ust explicitly transfer control to a statem
ent outside the

loop.

6.2.2 T
ransferring C

ontrol

T
he E

X
IT

 statem
ent is a useful facility for transferring control outside the D

O
 loop before the E

N
D

 D
O

is reached or the final iteration is com
pleted. A

fter an E
X

IT
 statem

ent has been executed control is
passed to the first statem

ent after the loop.

T
he C

Y
C

L
E

 statem
ent is transferring control back to the beginning of the loop to allow

 the next
iteration of the loop to begin.

C
onfusion can arise from

 m
ultiple and nested (i.e. one inside another) D

O
 loops, E

X
IT

 and C
Y

C
L

E
statem

ents hence nam
ing loops is highly recom

m
ended. A

s an exam
ple consider the follow

ing program
:

P
R
O
G
R
A
M

a
v
e
r
s
c
o
r
e

R
E
A
L

:
:

m
a
r
k
,

a
v
e
r
a
g
e

I
N
T
E
G
E
R
:
:

s
t
i
d
,

l
o
o
p

m
a
i
n
l
o
o
p
:

D
O

W
R
I
T
E
(
*
,
*
)

’
P
l
e
a
s
e

g
i
v
e

s
t
u
d
e
n
t

i
d
’

R
E
A
D
(
*
,
*
)

s
t
i
d

I
F

(
s
t
i
d
=
=
0
)

E
X
I
T

m
a
i
n
l
o
o
p

a
v
e
r
a
g
e
=
0

i
n
n
e
r
l
o
o
p
:

D
O

l
o
o
p
=
1
,
3

W
R
I
T
E
(
*
,
*
)

’
P
l
e
a
s
e

e
n
t
e
r

m
a
r
k
’

R
E
A
D
(
*
,
*
)

m
a
r
k

I
F

(
m
a
r
k
=
=
0
)

C
Y
C
L
E

i
n
n
e
r
l
o
o
p

n
e
g
s
:

I
F

(
m
a
r
k
<
0
)

T
H
E
N

W
R
I
T
E
(
*
,
*
)

’
W
r
o
n
g

m
a
r
k
.

S
t
a
r
t

a
g
a
i
n
’

C
Y
C
L
E

m
a
i
n
l
o
o
p

E
N
D

I
F

n
e
g
s

a
v
e
r
a
g
e
=
(
a
v
e
r
a
g
e
+
m
a
r
k
)

E
N
D

D
O

i
n
n
e
r
l
o
o
p

a
v
e
r
a
g
e
=
(
a
v
e
r
a
g
e
)
/
5

W
R
I
T
E
(
*
,
*
)

’
A
v
e
r
a
g
e

o
f

s
t
u
d
e
n
t
’
,
s
t
i
d
,
’

i
s

=

’
,
a
v
e
r
a
g
e

E
N
D

D
O

m
a
i
n
l
o
o
p

E
N
D

P
R
O
G
R
A
M

a
v
e
r
s
c
o
r
e

T
his program

 calculates the average m
ark of student given a series of 3 m

arks. It term
inates w

hen the
user enters zero as the student id. In the case of a negative m

ark being entered the user has to re-enter all
m

arks of that particular student (not only the w
rong one!). In case of a zero m

ark the program
 asks for

the next m
ark and saves adding a zero to the average total.

N
otice that the labelling of D

O
 and IF

 statem
ents m

ake the program
 not only easier to read and

understand but m
ore im

portantly able to perform
 the desired actions. U

sing E
X

IT
 or C

Y
C

L
E

 w
ithout

labels it w
ould had m

ade it difficult to com
prehend w

hich loop is referred to. C
onsider the case w

hen
the statem

ent C
ycle M

ainL
oop w

as stripped from
 its label. T

he program
 thinks w

e refer to the
InnerL

oop and for every negative num
ber w

e enter w
e m

iss a valid m
ark. E

ntering the follow
ing m

arks:
2 2 2 2 -4 results in an average of 1.6. T

he last value (-4) forces the program
 to go to the closest D

O
 loop

and to increase the counter. T
he counter then becom

es five and the loop exits. S
o the logic of the

program
 has been altered. If labels are not used then E

xit w
ill transfer control to the first statem

ent after
the E

N
D

 D
O

 associated w
ith the closest to E

xit D
O

.

S
im

ilarly, C
ycle w

ill transfer control to the closest D
O

 loop.T
his is a possible execution of the program

:

P
ass-1

P
l
e
a
s
e

g
i
v
e

s
t
u
d
e
n
t

i
d

1

!

T
h
i
s

i
s

a

v
a
l
i
d

i
d

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

4
0

!

v
a
l
i
d

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

5
3

!

v
a
l
i
d

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

6
5

!

v
a
l
i
d

A
v
e
r
a
g
e

m
a
r
k

o
f

s
t
u
d
e
n
t

1

i
s

=

0
0
0
0

C
ontrol returns to m

ainloop

P
ass-2

P
l
e
a
s
e

g
i
v
e

s
t
u
d
e
n
t

i
d

2

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

4
5

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

4
5

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

0

!
i
g
n
o
r
e
d

a
n
d

c
o
n
t
r
o
l

t
o

I
n
n
e
r
L
o
o
p

A
v
e
r
a
g
e

m
a
r
k

o
f

s
t
u
d
e
n
t

2

i
s

=

3
0
.
0
0
0
0
0

C
ontrol returns to m

ainloop

P
ass-3

P
l
e
a
s
e

g
i
v
e

s
t
u
d
e
n
t

i
d

3

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

4
0

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

-
1

!

C
o
n
t
r
o
l

t
o

M
a
i
n
L
o
o
p

W
r
o
n
g

m
a
r
k
.

S
t
a
r
t

a
g
a
i
n

P
l
e
a
s
e

g
i
v
e

s
t
u
d
e
n
t

i
d

3

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

4
0

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

8
5

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

8
6

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

8
7

P
l
e
a
s
e

e
n
t
e
r

m
a
r
k

8
8

A
v
e
r
a
g
e

m
a
r
k

o
f

s
t
u
d
e
n
t

3

i
s

=

5
2
.
6
0
0
0
0

C
ontrol returns to m

ainloop

P
ass-4

P
l
e
a
s
e

g
i
v
e

s
t
u
d
e
n
t

i
d

0

C
ontrol to 1st statem

ent after E
N

D
 D

O
 m

ainloop

6.3 E
xercises

1.
P

redict the values loop takes and the value loop has after term
ination of each of the follow

ing D
O

constructs, predictions m
ay be tested by w

riting a program
 w

hich accepts the values used in the
loop control clause as input.

(a) D
O

 loop=
5, 3, 1

(b) D
O

 loop=
-6, 0

(c) D
O

 loop=
-6, 0, -1

(d) D
O

 loop=
-6, 0, 1

(e) D
O

 loop=
6, 0, 1

(f) D
O

 loop=
6, 0, -1

(g) D
O

 loop=
-10, -5, -3

(h) D
O

 loop=
-10, -5, 3

2.
W

rite a program
 w

hich prints a m
ultiplication table (i.e. 1n=

?, 2n=
?,... 12n=

?). A
llow

 the user to
determ

ine w
hich table (value of n) they require.

3.
W

rite a program
 called ‘papersize’ to calculate and display the size of A

0 to A
6 papers in m

m
 an d

inches. U
se follow

ing form
ula:

W
here n is the size of the paper 0 to 6, and one inch=

2.54cm
.

4.
W

rite a program
 to produce the F

ibonacci sequence. T
his sequence starts w

ith tw
o integers, 1 and

1. T
he next num

ber in the sequence is found by adding the previous tw
o num

bers; for exam
ple, t he

4th num
ber in the series is the sum

 of the 2nd and the 3rd and so on. T
erm

inate w
hen the nth value

is greater than 100.

5.
T

he increase in tem
perature dT

 of a chem
ical reaction can be calculated using:

w
here T

 is the tem
perature in centigrade, and t is the tim

e in seconds. W
rite a program

 w
hich

prints the tem
perature of such a reaction at 1 m

inute intervals, T
he initial tem

perature is supplied
by the user and the above equations should be re-calculated once every second. T

he program
should term

inate w
hen the tem

perature reaches tw
ice the initial tem

perature.

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

7 P
rogram

 units

7.1 P
rogram

 structure

A
 single F

ortran 90 program
 can be m

ade up of a num
ber of distinct program

 units, nam
ely procedures

(internal, external and m
odule) and m

odules. A
n executable program

 consists of one m
ain program

, and
any num

ber (including zero) of other program
 units. It is im

portant to realise that the internal details of
each program

 unit is separate from
 other units. T

he only link betw
een units is the interface, w

here one
unit invokes another by nam

e. T
he key to w

riting program
s through program

 units is to ensure that the
procedure interfaces are consistent.

T
he follow

ing illustrates the relationship betw
een the different types of program

 units:

D
ividing a program

 into units has several advantages:

P
rogram

 units can be w
ritten and tested independently.

A
 program

 unit that has a w
ell defined task is easier to understand and m

aintain.

O
nce developed and tested m

odules and external procedures can be re-used in other program
s

(allow
ing the program

m
er to build up personal libraries).

S
om

e com
pilers can better optim

ise code w
hen in m

odular form
.

7.2 T
he m

ain program

A
ll program

s have one (and only one) m
ain program

. A
 program

 alw
ays begins executing from

 the first
statem

ent in the m
ain program

 unit, and proceeds from
 there. T

he general form
 of the m

ain program
 unit

is:

P
R
O
G
R
A
M

[
n
a
m
e
]

[
s
p
e
c
i
f
i
c
a
t
i
o
n

s
t
a
t
e
m
e
n
t
s
]

[
e
x
e
c
u
t
a
b
l
e

s
t
a
t
e
m
e
n
t
s
]

.
.
.

[
C
O
N
T
A
I
N
S

i
n
t
e
r
n
a
l

p
r
o
c
e
d
u
r
e
s
]

E
N
D

[
P
R
O
G
R
A
M

[
n
a
m
e
]
]

T
he P

R
O

G
R

A
M

 statem
ent m

arks the beginning of the m
ain program

 unit w
hile the E

N
D

 P
R

O
G

R
A

M
statem

ent not only m
arks the end of the unit but also the end of the program

 as a w
hole. T

he nam
e of the

program
 is optional but advisable. T

he C
O

N
T

A
IN

S
 statem

ent serves to identify any procedures that are
internal to the m

ain program
 unit. (Internal procedures are dealt w

ith later on in this chapter.) W
hen all

executable statem
ents are com

plete, control is passed over any internal procedures to the E
N

D
statem

ent.

A
 program

 can be stopped at any point during its execution, and from
 any program

 unit, through the
S

T
O

P
 statem

ent:

S
T
O
P

[
l
a
b
e
l
]

w
here label is an optional character string (enclosed in quotes) w

hich m
ay be used to inform

 the user
w

hy and at w
hat point the program

 has stopped.

7.3 P
rocedures

P
rocedures are a type of program

 unit, and m
ay be either subroutines or functions. P

rocedures are used
to group together statem

ents that perform
 a self-contained, w

ell defined task. B
oth subroutines and

functions have the follow
ing general form

:

p
r
o
c
e
d
u
r
e

n
a
m
e

[
(
a
r
g
u
m
e
n
t

l
i
s
t
)
]

[
s
p
e
c
i
f
i
c
a
t
i
o
n

s
t
a
t
e
m
e
n
t
s
]

[
e
x
e
c
u
t
a
b
l
e

s
t
a
t
e
m
e
n
t
s
]

.
.
.

[
C
O
N
T
A
I
N
S

i
n
t
e
r
n
a
l

p
r
o
c
e
d
u
r
e
s
]

E
N
D

p
r
o
c
e
d
u
r
e

[
n
a
m
e
]

w
here procedure m

ay be either S
U

B
R

O
U

T
IN

E
 or F

U
N

C
T

IO
N

.

T
here are several different types of procedure:

Internal - inside another program
 unit.

E
xternal - self contained (possibly in languages other than F

ortran 90).

M
odule - contained w

ithin a m
odule.

T
o use a procedure (regardless of type) requires a referencing statem

ent. S
ubroutines are invoked by the

C
A

L
L

 statem
ent w

hile functions are referenced by nam
e:

C
A
L
L

n
a
m
e

[
(

a
r
g
u
m
e
n
t

l
i
s
t

)
]

r
e
s
u
l
t

=

n
a
m
e

[
(

a
r
g
u
m
e
n
t

l
i
s
t

)
]

In both cases control is passed to the procedure from
 the referencing statem

ent, and is returned to the
sam

e statem
ent w

hen the procedure exits. T
he argum

ent list are zero or m
ore variables or expressions,

the values of w
hich are used by the procedure.

7.3.1 A
ctual and dum

m
y argum

ents

P
rocedures are used to perform

 w
ell defined tasks using the data available to them

. T
he m

ost com
m

on
w

ay to m
ake data available to a procedure is by passing it in an argum

ent list w
hen the procedure is

referenced.

A
n argum

ent list is sim
ply a num

ber of variables or expressions (or even procedure nam
es - see later).

T
he argum

ent(s) in a referencing statem
ent are called actual argum

ents, w
hile those in the corresponding

procedure statem
ent are call dum

m
y argum

ents. A
ctual and dum

m
y argum

ent are associated by their
position in a list, i.e the first actual argum

ent corresponds to the first dum
m

y argum
ent, the second

actual argum
ent w

ith the second dum
m

y argum
ent, etc. T

he data type, rank, etc. of actual and dum
m

y
argum

ents m
ust correspond exactly.

W
hen a procedure is referenced data is copied from

 actual to dum
m

y argum
ent(s), and is copied back

from
 dum

m
y to actual argum

ent(s) on return. B
y altering the value of a dum

m
y argum

ent, a procedure
can change the value of an actual argum

ent.

A
 subroutine is used to change the value of one or m

ore of its argum
ents; for exam

ple:

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
1
0
)

:
:

a
,

c

.
.
.

C
A
L
L

s
w
a
p
(

a
,
c

)

S
U
B
R
O
U
T
I
N
E

s
w
a
p
(

a
,
b

)

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
1
0
)

:
:

a
,

b
,

t
e
m
p

t
e
m
p

=

a

a

=

b

b

=

t
e
m
p

E
N
D

S
U
B
R
O
U
T
I
N
E

s
w
a
p

T
he subroutine sw

ap exchanges the contents of tw
o real arrays.

A
 function is used to generate a single result based on its argum

ents, for exam
ple:

R
E
A
L

:
:

y
,
x
,
c

.
.
.

y

=

l
i
n
e
(

3
.
4
,
x
,
c

)

F
U
N
C
T
I
O
N

l
i
n
e
(

m
,
x
,
c
o
n
s
t

)

R
E
A
L

:
:

l
i
n
e

R
E
A
L

:
:

m
,

x
,

c
o
n
s
t

l
i
n
e

=

m
*
x

+

c
o
n
s
t

!

a
l
w
a
y
s

a
s
s
i
g
n

a

v
a
l
u
e

t
o

t
h
e

f
u
n
c
t
i
o
n

i
d
.

E
N
D

F
U
N
C
T
I
O
N

l
i
n
e

T
he function line calculates the value of y from

 the equation of a straight line. T
he nam

e of the
function, line, is treated exactly like a variable, it m

ust be declared w
ith the sam

e data type as y
and is used to store the value of the function result.

N
ote that in both exam

ples, the nam
e of a dum

m
y argum

ent m
ay be the sam

e as or different from
 the

nam
e of the actual argum

ent.

7.3.2 Internal procedures

P
rogram

 units (the m
ain program

, external procedures and m
odules) m

ay contain internal procedures.
T

hey are gathered together at the end of a program
 unit after the C

O
N

T
A

IN
S

 statem
ent. A

 unit ‘hosts’
any procedures that are contained w

ithin it. Internal procedures m
ay not them

selves contain other
internal procedures and thus cannot include the C

O
N

T
A

IN
S

 statem
ent.

Internal procedures m
ay only be referenced by their host and other procedures internal to the sam

e host,
although internal procedures m

ay invoke other (external and m
odule) procedures.

F
or exam

ple:

P
R
O
G
R
A
M

o
u
t
e
r

R
E
A
L

:
:

a
,

b
,

c

.
.
.

C
A
L
L

i
n
n
e
r
(

a

)

.
.
.

C
O
N
T
A
I
N
S

S
U
B
R
O
U
T
I
N
E

i
n
n
e
r
(

a

)

!
o
n
l
y

a
v
a
i
l
a
b
l
e

t
o

o
u
t
e
r

R
E
A
L

:
:

a

!
p
a
s
s
e
d

b
y

a
r
g
u
m
e
n
t

R
E
A
L

:
:

b
=
1
.
0

!
r
e
d
e
f
i
n
e
d

c

=

a

+

b

!
c

h
o
s
t

a
s
s
o
c
i
a
t
i
o
n

E
N
D

S
U
B
R
O
U
T
I
N
E

i
n
n
e
r

E
N
D

P
R
O
G
R
A
M

o
u
t
e
r

T
he program

 outer contains the internal subroutine inner. N
ote that variables defined in the host unit

rem
ain defined in the internal procedure, unless explicitly redefined there. In the exam

ple, although a, b
and c are all defined in outer:

T
he value of a is passed by argum

ent to a redefined variable (dum
m

y argum
ent) also called a.

E
ven though they hold the sam

e value, the variables a are different objects.

L
ike a, the variable b is redefined in the subroutine and so is a different object to b in the host

program
. T

he value of b is not passed by argum
ent or by host association.

c is a single object, com
m

on to both outer and inner through host association.

In order to prevent redefining a variable by m
istake, it is good practice to declare all variables used in a

procedure.

7.3.3 E
xternal procedures

E
xternal procedures are self contained program

 units (subroutines or functions) that m
ay contain (i.e.

host) internal procedures. F
or exam

ple:

P
R
O
G
R
A
M

f
i
r
s
t

R
E
A
L

:
:

x

x

=

s
e
c
o
n
d
(
)

.
.
.

E
N
D

P
R
O
G
R
A
M

f
i
r
s
t

F
U
N
C
T
I
O
N

s
e
c
o
n
d
(
)

!
e
x
t
e
r
n
a
l

R
E
A
L

:
:

s
e
c
o
n
d

.
.
.

!
n
o

h
o
s
t

a
s
s
o
c
i
a
t
i
o
n

E
N
D

F
U
N
C
T
I
O
N

s
e
c
o
n
d

E
xternal procedures have no host program

 unit, and cannot therefore share data through host association.
P

assing data by argum
ent is the m

ost com
m

on w
ay of sharing data w

ith an external procedure. E
xternal

procedures m
ay be referenced by all other types of procedure.

7.4 P
rocedure variables

A
ny variables declared in a procedure (w

hat ever its type) are referred to as local to that procedure, i.e.
generally they cannot be used outside of the procedure in w

hich they are declared. D
um

m
y variables are

alw
ays local to a procedure.

V
ariables declared inside a procedure usually only exist w

hile the procedure in question is executing:

W
henever a procedure is referenced, variables declared in the procedure are ‘created’ and

allocated the required storage from
 m

em
ory.

W
henever a procedure exits, by default variables declared in the procedure are ‘destroyed’ and any

storage they m
ay have used is recovered.

T
his ‘creation’ and ‘destruction’ of procedures variables m

eans that by default, no variable declared
inside a procedure retains is value from

 one call to the next. T
his default can be overcom

e to allow
 local

variables to retain their values from
 call to call.

7.4.1 SA
V

E

T
he S

A
V

E
 attribute forces the program

 to retain the value of a procedure variable from
 one call to the

next. A
ny variable that is given an initial value in its declaration statem

ent has the S
A

V
E

 attribute by
default. F

or exam
ple:

F
U
N
C
T
I
O
N

f
u
n
c
1
(

a
_
n
e
w

)

R
E
A
L

:
:

f
u
n
c
1

R
E
A
L

:
:

a
_
n
e
w

R
E
A
L
,

S
A
V
E

:
:

a
_
o
l
d

!
s
a
v
e
d

I
N
T
E
G
E
R

:
:

c
o
u
n
t
e
r
=
0

!
s
a
v
e
d

.
.
.

a
_
o
l
d

=

a
_
n
e
w

c
o
u
n
t
e
r

=

c
o
u
n
t
e
r
+
1

E
N
D

F
U
N
C
T
I
O
N

f
u
n
c
1

T
he first tim

e the function func1 is referenced, a_old has an undefined value w
hile counter is set to zero.

T
hese values are reset by the function and saved so that in any subsequent calls a_old has the value of

the previous argum
ent and counter is the num

ber of tim
es func1 has previously been referenced.

N
ote: it is not possible to save dum

m
y argum

ents or function results!

7.5 Interface blocks

Interfaces occur w
here ever one program

 unit references another. T
o w

ork properly a program
 m

ust
ensure that the actual argum

ents in a reference to a procedure are consistent w
ith the dum

m
y argum

ents
expected by that procedure. Interfaces are checked by the com

piler during the com
pilation phase of a

program
 and m

ay be:

explicit - as w
ith references to internal and m

odule procedures, w
here the com

piler can see the
details of the call and procedure statem

ents.

im
plicit - as w

ith references to external procedures, here the com
piler assum

es the details of the
call and procedure statem

ents correspond.

W
here ever possible interfaces should be m

ade explicit. T
his can be done through the interface block:

I
N
T
E
R
F
A
C
E

i
n
t
e
r
f
a
c
e

s
t
a
t
e
m
e
n
t
s

E
N
D

I
N
T
E
R
F
A
C
E

T
he interface block for a procedure is included at the start of the referencing program

 unit. T
he interface

statem
ents consist of a copy of the S

U
B

R
O

U
T

IN
E

 (or F
U

N
C

T
IO

N
) statem

ent, all declaration
statem

ents for dum
m

y argum
ents and the E

N
D

 S
U

N
R

O
U

T
IN

E
 (or F

U
N

C
T

IO
N

) statem
ent. F

or
exam

ple:

P
R
O
G
R
A
M

c
o
u
n
t

I
N
T
E
R
F
A
C
E

S
U
B
R
O
U
T
I
N
E

t
i
e
s
(
s
c
o
r
e
,

n
t
i
e
s
)

R
E
A
L

:
:

s
c
o
r
e
(
5
0
)

I
N
T
E
G
E
R

:
:

n
t
i
e
s

E
N
D

S
U
B
R
O
U
T
I
N
E

t
i
e
s

E
N
D

I
N
T
E
R
F
A
C
E

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
5
0
)
:
:

d
a
t
a

.
.
.

C
A
L
L

t
i
e
s
(
d
a
t
a
,

n
)

.
.
.

E
N
D

P
R
O
G
R
A
M

c
o
u
n
t

S
U
B
R
O
U
T
I
N
E

t
i
e
s
(
s
c
o
r
e
,

n
t
i
e
s
)

R
E
A
L

:
:

s
c
o
r
e
(
5
0
)

I
N
T
E
G
E
R

:
:

n
t
i
e
s

.
.
.

E
N
D

S
U
B
R
O
U
T
I
N
E

t
i
e
s

T
he interface block in the program

 count provides an explicit interface to the subroutine ties. If the count
w

ere to reference other external procedures, their interface statem
ents could be placed in the sam

e
interface block.

7.6 P
rocedures argum

ents

7.6.1 A
ssum

ed shape objects

O
ne of the m

ost pow
erful aspects of using a procedure to perform

 a task is that once w
ritten and tested

the procedure m
ay be used and reused as required (even in other program

s).

S
ince it is often the case that a program

 m
ay w

ish to pass different sized arrays or character strings to the
sam

e procedure, F
ortran 90 allow

s dum
m

y argum
ents to have a variable sizes. S

uch objects are call
assum

ed shape objects. F
or exam

ple:

S
U
B
R
O
U
T
I
N
E

s
u
b
2
(
d
a
t
a
1
,

d
a
t
a
3
,

s
t
r
)

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
:
)

:
:

d
a
t
a
1

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
:
,
:
,
:
)

:
:

d
a
t
a
3

C
H
A
R
A
C
T
E
R
(
l
e
n
=
*
)

:
:

s
t
r

.
.
.

T
he dum

m
y argum

ents data1 and data3 are both arrays w
hich have been declared w

ith a rank but no
size, the colon ‘:’ is used instead of a specific size in each dim

ension. S
im

ilarly str has no explicit
length, it adopts the length of the actual argum

ent string. W
hen the subroutine sub2 is called, all three

dum
m

y argum
ents assum

e the size of their corresponding actual argum
ents; all three dum

m
y argum

ents
are assum

ed shape objects.

7.6.2 T
he IN

T
E

N
T

 attribute

It is possible, and good program
m

ing practice, to specify how
 a dum

m
y argum

ent w
ill be used in a

procedure using the IN
T

E
N

T
 attribute:

IN
T

E
N

T
(IN

) - m
eans that the dum

m
y argum

ent is expected to have a value w
hen the procedure is

referenced, but that this value is not updated by the procedure.

IN
T

E
N

T
(O

U
T

) - m
eans that the dum

m
y argum

ent has no value w
hen the procedure is referenced,

but that it w
ill given one before the procedure finishes.

IN
T

E
N

T
(IN

O
U

T
) - m

eans that the dum
m

y argum
ent has an initial value that w

ill be updated by
the procedure.

F
or exam

ple:

S
U
B
R
O
U
T
I
N
E

i
n
v
e
r
t
(
a
,

i
n
v
e
r
s
e
,

c
o
u
n
t
)

R
E
A
L
,

I
N
T
E
N
T
(
I
N
)

:
:

a

R
E
A
L
,

I
N
T
E
N
T
(
O
U
T
)

:
:

i
n
v
e
r
s
e

I
N
T
E
G
E
R
,

I
N
T
E
N
T
(
I
N
O
U
T
)

:
:

c
o
u
n
t

i
n
v
e
r
s
e

=

1
/
a

c
o
u
n
t

=

c
o
u
n
t
+
1

E
N
D

S
U
B
R
O
U
T
I
N
E

i
n
v
e
r
t

T
he subroutine invert has three dum

m
y argum

ents. a is used in the procedure but is not updated by it and
therefore has IN

T
E

N
T

(IN
). inverse is calculated in the subroutine and so has IN

T
E

N
T

(O
U

T
). count (the

num
ber of tim

es the subroutine has been called) is increm
ented by the procedure and so requires the

IN
T

E
N

T
(IN

O
U

T
) attribute.

7.6.3 K
eyw

ord argum
ents

Instead of associating actual argum
ent w

ith dum
m

y argum
ents by position only, it is possible to

associate w
ith a dum

m
y argum

ent by nam
e. T

his can help avoid confusion w
hen referencing a

procedure and is often used w
hen calling som

e of F
ortran 90’s intrinsic procedures. F

or exam
ple:

S
U
B
R
O
U
T
I
N
E

s
u
b
2
(
a
,

b
,

s
t
a
t
)

I
N
T
E
G
E
R
,

I
N
T
E
N
T
(
I
N
)

:
:

a
,

b

I
N
T
E
G
E
R
,

I
N
T
E
N
T
(
I
N
O
U
T
)
:
:

s
t
a
t

.
.
.

E
N
D

S
O
B
R
O
U
T
I
N
E

s
u
b
2

could be referenced using the statem
ents:

I
N
T
E
G
E
R

:
:

x
=
0

.
.
.

C
A
L
L

s
u
b
2
(

a
=
1
,

b
=
2
,

s
t
a
t
=
x

)

C
A
L
L

s
u
b
2
(

1
,

s
t
a
t
=
x
,

b
=
2
)

C
A
L
L

s
u
b
2
(

1
,

2
,

s
t
a
t
=
x

)

T
he dum

m
y variable nam

es act as keyw
ords in the call statem

ent. U
sing keyw

ords, the order of
argum

ents in a call statem
ent can be altered, how

ever keyw
ords m

ust com
e after all argum

ents
associated by position:

C
A
L
L

s
u
b
2
(

1
,

b
=
2
,

0

)

!
i
l
l
e
g
a
l

C
A
L
L

s
u
b
2
(

1
,

s
t
a
t
=
x
,

2
)

!
i
l
l
e
g
a
l

W
hen using keyw

ord argum
ents the interface betw

een referencing program
 unit and procedure m

ust be
explicit. N

ote also that argum
ents w

ith the IN
O

U
T

 attribute m
ust be assigned a variable and not just a

value, stat=
0 w

ould be illegal.

7.6.4 O
ptional argum

ents

O
ccasionally, not all argum

ents are required every tim
e a procedure is used. T

herefore som
e argum

ents
m

ay be specified as optional, using the O
P

T
IO

N
A

L
 attribute:

S
U
B
R
O
U
T
I
N
E

s
u
b
1
(
a
,

b
,

c
,

d
)

I
N
T
E
G
E
R
,

I
N
T
E
N
T
(
I
N
O
U
T
)
:
:

a
,

b

R
E
A
L
,

I
N
T
E
N
T
(
I
N
)
,

O
P
T
I
O
N
A
L

:
:

c
,

d

.
.
.

E
N
D

S
U
B
R
O
U
T
I
N
E

s
u
b
1

H
ere a and b are alw

ays required w
hen calling sub1. T

he argum
ents c and d are optional and so sub1

m
ay be referenced by:

C
A
L
L

s
u
b
1
(

a
,

b

)

C
A
L
L

s
u
b
1
(

a
,

b
,

c
,

d

)

C
A
L
L

s
u
b
1
(

a
,

b
,

c

)

N
ote that the order in w

hich argum
ents appear is im

portant (unless keyw
ord argum

ents are used) so that
it is not possible to call sub1 w

ith argum
ent d but no argum

ent c. F
or exam

ple:

C
A
L
L

s
u
b
1
(

a
,

b
,

d

)

!
i
l
l
e
g
a
l

O
ptional argum

ents m
ust com

e after all argum
ents associated by position in a referencing statem

ent and
require an explicit interface.

It is possible to test w
hether or not an optional argum

ent is present w
hen a procedure is referenced using

the logical intrinsic function P
R

E
S

E
N

T
. F

or exam
ple:

R
E
A
L

:
:

i
n
v
e
r
s
e
_
c

I
F
(

P
R
E
S
E
N
T
(
c
)

)

T
H
E
N

i
n
v
e
r
s
e
_
c

=

0
.
0

E
L
S
E

i
n
v
e
r
s
e
_
c

=

1
/
c

E
N
D
I
F

If the optional argum
ent is present then P

R
E

S
E

N
T

 returns a value .T
R

U
E

. In the above exam
ple this is

used to prevent a run-tim
e error (dividing by zero w

ill cause a program
 to ‘crash’).

7.6.5 P
rocedures as argum

ents

It is possible to use a procedure as an actual argum
ent in a call another procedure. F

requently it is the
result of a function w

hich is used as an actual argum
ent to another procedure. F

or exam
ple:

P
R
O
G
R
A
M

t
e
s
t

I
N
T
E
R
F
A
C
E

R
E
A
L

F
U
N
C
T
I
O
N

f
u
n
c
(

x

)

R
E
A
L
,

I
N
T
E
N
T
(
I
N
)

:
:
x

E
N
D

F
U
N
C
T
I
O
N

f
u
n
c

E
N
D

I
N
T
E
R
F
A
C
E

.
.
.

C
A
L
L

s
u
b
1
(

a
,

b
,

f
u
n
c
(
2
)

)

.
.
.

E
N
D

P
R
O
G
R
A
M

t
e
s
t

R
E
A
L

F
U
N
C
T
I
O
N

f
u
n
c
(

x

)

!
e
x
t
e
r
n
a
l

R
E
A
L
,

I
N
T
E
N
T
(
I
N
)

:
:

x

f
u
n
c

=

1
/
x

E
N
D

F
U
N
C
T
I
O
N

f
u
n
c

W
hen the call to sub1 is m

ade the three argum
ents w

ill be a, b and the result of func, in this case the
return value is 1/2. T

he procedure that is used as an argum
ent w

ill alw
ays execute before the procedure

in w
hose referencing statem

ent it appears begins. U
sing a procedure as an argum

ent requires an explicit
interface.

N
ote that the specification statem

ent for the function func identifies the result as being of type R
E

A
L

,
this is an alternative to declaring the function nam

e as a variable, i.e.

R
E
A
L

F
U
N
C
T
I
O
N

f
u
n
c
(

x

)

R
E
A
L
,

I
N
T
E
N
T
(
I
N
)

:
:

x

f
u
n
c

=

1
/
x

E
N
D

F
U
N
C
T
I
O
N

f
u
n
c

and

F
U
N
C
T
I
O
N

f
u
n
c
(

x

)

R
E
A
L

:
:

f
u
n
c

R
E
A
L
,

I
N
T
E
N
T
(
I
N
)

:
:

x

f
u
n
c

=

1
/
x

E
N
D

F
U
N
C
T
I
O
N

f
u
n
c

are equivalent.

7.7 R
ecursion

It is possible for a procedure to reference itself. S
uch procedures are called recursive procedures and

m
ust be defined as such using the R

E
C

U
R

S
IV

E
 attribute. A

lso for functions the function nam
e is not

available for use as a variable, so a R
E

S
U

L
T

 clause m
ust be used to specify the nam

e of the variable
holding the function result, for exam

ple:

R
E
C
U
R
S
I
V
E

F
U
N
C
T
I
O
N

f
a
c
t
o
r
i
a
l
(

n

)

R
E
S
U
L
T
(
r
e
s
)

I
N
T
E
G
E
R
,

I
N
T
E
N
T
(
I
N
)

:
:

n

I
N
T
E
G
E
R

:
:

r
e
s

I
F
(

n
=
=
1

)

T
H
E
N

r
e
s

=

1

E
L
S
E

r
e
s

=

n
*
f
a
c
t
o
r
i
a
l
(

n
-
1

)

E
N
D

I
F

E
N
D

F
U
N
C
T
I
O
N

f
a
c
t
o
r
i
a
l

R
ecursion m

ay be one of tw
o types:

Indirect recursion - A
 calls B

 calls A
...

D
irect recursion - A

 calls A
 calls A

...

both of w
hich require the R

E
C

U
R

S
IV

E
 attribute for the procedure A

.

R
ecursive procedures require careful handling. It is im

portant to ensure that the procedure does not
invoke itself continually. F

or exam
ple, the recursive procedure factorial above uses an IF

 construct to
either call itself (again) or return a fixed result. T

herefore there is a lim
it to the num

ber of tim
es the

procedure w
ill be invoked.

7.8 G
eneric procedures

It is often the case that the task perform
ed by a procedure on one data type can be applied equally to

other data types. F
or exam

ple the procedure needed to sort an array of real num
bers into ascending order

is alm
ost identical to that required to sort an array of integers. T

he difference betw
een the tw

o arrays is

likely to be the data type of the dum
m

y argum
ents.

F
or convenience, F

ortran 90 allow
s tw

o or m
ore procedures to be referenced by the sam

e, generic nam
e.

E
xactly w

hich procedure is invoked w
ill depend on the data type (or rank) of the actual argum

ent(s) in
the referencing statem

ent. T
his is illustrated by som

e of the intrinsic functions, for exam
ple:

T
he S

Q
R

T
() intrinsic function (returns the square root of its argum

ent) can be given a real, double
precision or com

plex num
ber as an argum

ent:

if the actual argum
ent is a real num

ber, a function called S
Q

R
T

 is invoked.

if the actual argum
ent is a double precision num

ber, a function called D
S

Q
R

T
 is invoked.

if the actual argum
ent is a com

plex num
ber, a function called C

S
Q

R
T

 is invoked.

A
 generic interface is required in order to declared a com

m
on nam

e and to identify w
hich procedures

can be referred to by the nam
e. F

or exam
ple:

I
N
T
E
R
F
A
C
E

s
w
a
p

S
U
B
R
O
U
T
I
N
E

i
s
w
a
p
(

a
,

b

)

I
N
T
E
G
E
R
,

I
N
T
E
N
T
(
I
N
O
U
T
)

:
:

a
,

b

E
N
D

S
U
B
R
O
U
T
I
N
E

i
s
w
a
p

S
U
B
R
O
U
T
I
N
E

r
s
w
a
p
(

a
,

b

)

R
E
A
L
,

I
N
T
E
N
T
(
I
N
O
U
T
)

:
:

a
,

b

E
N
D

S
U
B
R
O
U
T
I
N
E

r
s
w
a
p

E
N
D

I
N
T
E
R
F
A
C
E

T
he interface specifies tw

o subroutines isw
ap and rsw

ap w
hich can be called using the generic nam

e
sw

ap. If the argum
ents to sw

ap are both real num
bers then rsw

ap is invoked, if the argum
ents are both

integers isw
ap is invoked.

W
hile a generic interface can group together any procedures perform

ing any task(s) it is good
program

m
ing practice to only group together procedures that perform

 the sam
e operation on a different

argum
ents.

7.9 M
odules

M
odules are a type of program

 unit new
 to the F

ortran standard. T
hey are designed to hold definitions,

data and procedures w
hich are to be m

ade available to other program
 units. A

 program
 m

ay use any
num

ber of m
odules, w

ith the restriction that each m
ust be nam

ed separately.

T
he general form

 of a m
odule follow

s that of other program
 units:

M
O
D
U
L
E

n
a
m
e

[
d
e
f
i
n
i
t
i
o
n
s
]

.
.
.

[
C
O
N
T
A
I
N
S

m
o
d
u
l
e

p
r
o
c
e
d
u
r
e
s
]

E
N
D

[
M
O
D
U
L
E

[
n
a
m
e
]
]

In order to m
ake use of any definitions, data or procedures found in a m

odule, a program
 unit m

ust
contain the statem

ent:

U
S
E

n
a
m
e

at its start.

7.9.1 G
lobal data

S
o far variables declared in one program

 unit have not been available outside of that unit (recall that host
association only allow

s procedures w
ithin the sam

e program
 unit to ‘share’ variables).

U
sing m

odules it is possible to place declarations for all global variables w
ithin a m

odule and then U
S

E
that m

odule. F
or exam

ple:

M
O
D
U
L
E

g
l
o
b
a
l

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
1
0
0
)

:
:

a
,

b
,

c

I
N
T
E
G
E
R

:
:

l
i
s
t
(
1
0
0
)

L
O
G
I
C
A
L

:
:

t
e
s
t

E
N
D

M
O
D
U
L
E

g
l
o
b
a
l

A
ll variables in the m

odule global can be accessed by a program
 unit through the statem

ent:

U
S
E

g
l
o
b
a
l

T
he U

S
E

 statem
ent m

ust appear at the start of a program
 unit, im

m
ediately after the P

R
O

G
R

A
M

 or
other program

 unit statem
ent. A

ny num
ber of m

odules m
ay be used by a program

 unit, and m
odules

m
ay even use other m

odules. H
ow

ever m
odules cannot U

S
E

 them
selves either directly (m

odule A
 uses

A
) or indirectly (m

odule A
 uses m

odule B
 w

hich uses m
odule A

).

It is possible to lim
it the variables a program

 unit m
ay access. T

his can act as a ‘safety feature’, ensuring
a program

 unit does not accidentally change the value of a variable in a m
odule. T

o lim
it the variables a

program
 unit m

ay reference requires the O
N

L
Y

 qualifier, for exam
ple:

U
S
E

g
l
o
b
a
l
,

O
N
L
Y
:

a
,

c

T
his ensures that a program

 unit can only reference the variables a and c from
 the m

odule global. It is
good program

m
ing practice to U

S
E

 ... O
N

L
Y

 those variables w
hich a program

 unit requires.

A
 potential problem

 w
ith using global variables are nam

e clashes, i.e. the sam
e nam

e being used for

different variables in different parts of the program
. T

he U
S

E
 statem

ent can overcom
e this by allow

ing a
global variable to be referenced by a local nam

e, for exam
ple:

U
S
E

g
l
o
b
a
l
,

s
t
a
t
e
=
>
t
e
s
t

H
ere the variable state is the local nam

e for the variable test. T
he =

>
 sym

bol associates a different nam
e

w
ith the global variable.

7.9.2 M
odule procedures

Just as variables declared in a m
odule are global, so procedures contained w

ithin a m
odule becom

e
global, i.e. can be referenced from

 any program
 unit w

ith the appropriate U
S

E
 statem

ent. P
rocedures

contained w
ithin a m

odule are called m
odule procedures.

M
odule procedures have the sam

e form
 as external procedures, that is they m

ay contain internal
procedures. H

ow
ever unlike external procedures there is no need to provide an interface in the

referencing program
 unit for m

odule procedures, the interface to m
odule procedures is im

plicit.

M
odule procedures are invoked as norm

al (i.e. through the C
A

L
L

 statem
ent or function reference) but

only by those program
 units that have the appropriate U

S
E

 statem
ent. A

 m
odule procedure m

ay call
other m

odule procedures w
ithin the sam

e m
odule or in other m

odules (through a U
S

E
 statem

ent). A
m

odule procedure also has access to the variables declared in a m
odule through ‘host association’. N

ote
that just as w

ith other program
 units, variables declared w

ithin a m
odule procedure are local to that

procedure and cannot be directly referenced elsew
here.

O
ne of the m

ain uses for a m
odule is to group together data and any associated procedures. T

his is
particularly useful w

hen derived data types and associated procedures are involved. F
or exam

ple:

M
O
D
U
L
E

c
a
r
t
e
s
i
a
n

T
Y
P
E

p
o
i
n
t

R
E
A
L

:
:

x
,

y

E
N
D

T
Y
P
E

p
o
i
n
t

C
O
N
T
A
I
N
S

S
U
B
R
O
U
T
I
N
E

s
w
a
p
(

p
1
,

p
2

)

T
Y
P
E
(
p
o
i
n
t
)
,

I
N
T
E
N
T
(
I
N
O
U
T
)
:
:

p
1

T
Y
P
E
(
p
o
i
n
t
)
,

I
N
T
E
N
T
(
I
N
O
U
T
)
:
:

p
2

T
Y
P
E
(
p
o
i
n
t
)

:
:

t
m
p

t
m
p

=

p
1

p
1

=

p
2

p
2

=

t
m
p

E
N
D

S
U
B
R
O
U
T
I
N
E

s
w
a
p

E
N
D

M
O
D
U
L
E

c
a
r
t
e
s
i
a
n

T
he m

odule carteasian contains a declaration for a data type called point. cartesian also contains a
m

odule subroutine w
hich sw

aps the values of its point data type argum
ents. A

ny other program
 unit

could declare variables of type point and use the subroutine sw
ap via the U

S
E

 statem
ent, for exam

ple:

P
R
O
G
R
A
M

g
r
a
p
h

U
S
E

c
a
r
t
e
s
i
a
n

T
Y
P
E
(
p
o
i
n
t
)

:
:

f
i
r
s
t
,

l
a
s
t

.
.
.

C
A
L
L

s
w
a
p
(

f
i
r
s
t
,

l
a
s
t
)

.
.
.

E
N
D

P
R
O
G
R
A
M

g
r
a
p
h

7.9.3 P
U

B
L

IC
 and P

R
IV

A
T

E

B
y default all entities in a m

odule are accessible to program
 units w

ith the correct U
S

E
 statem

ent.
H

ow
ever som

etim
es it m

ay be desirable to restrict access to the variables, declaration statem
ents or

procedures in a m
odule. T

his is done using a com
bination of P

U
B

L
IC

 and/or P
R

IV
A

T
E

 statem
ents (or

attributes).

T
he P

R
IV

A
T

E
 statem

ent/attribute prevents access to m
odule entities from

 any program
 unit, P

U
B

L
IC

 is
the opposite. B

oth m
ay and be used in a num

ber of w
ays:

A
s a statem

ent P
U

B
L

IC
 or P

R
IV

A
T

E
 can set the default for the m

odule, or can be applied to a list
of variables or m

odule procedure nam
es.

A
s an attribute P

U
B

L
IC

 or P
R

IV
A

T
E

 can control access to the variables in a declaration list.

M
O
D
U
L
E

o
n
e

P
R
I
V
A
T
E

!
s
e
t

t
h
e

d
e
f
a
u
l
t

f
o
r

m
o
d
u
l
e

R
E
A
L
,

P
U
B
L
I
C

:
:

a

R
E
A
L

:
:

b

P
U
B
L
I
C

:
:

i
n
i
t
_
a

C
O
N
T
A
I
N
S

S
U
B
R
O
U
T
I
N
E

i
n
i
t
_
a
(
)

!
p
u
b
l
i
c

.
.
.

S
U
B
R
O
U
T
I
N
E

i
n
i
t
_
b
(
)

!
p
r
i
v
a
t
e

.
.
.

E
N
D

M
O
D
U
L
E

o
n
e

7.9.4 G
eneric procedures

It is possible to reference m
odule procedures through a generic nam

e. If this is the case then a generic
interface m

ust be supplied. T
he form

 of the interface block is as follow
s:

I
N
T
E
R
F
A
C
E

g
e
n
e
r
i
c
_
n
a
m
e

M
O
D
U
L
E

P
R
O
C
E
D
U
R
E

n
a
m
e
_
l
i
s
t

E
N
D

I
N
T
E
R
F
A
C
E

w
here nam

e_list are the procedures to be referenced via generic_nam
e, for exam

ple a m
odule containing

generic subroutines to sw
ap the values of tw

o arrays including arrays of derived data types w
ould look

like:

M
O
D
U
L
E

c
a
r
t
e
s
i
a
n

T
Y
P
E

p
o
i
n
t

R
E
A
L

:
:

x
,

y

E
N
D

T
Y
P
E

p
o
i
n
t

I
N
T
E
R
F
A
C
E

s
w
a
p

M
O
D
U
L
E

P
R
O
C
E
D
U
R
E

p
o
i
n
t
s
w
a
p
,

i
s
w
a
p
,

r
s
w
a
p

E
N
D

I
N
T
E
R
F
A
C
E

C
O
N
T
A
I
N
S

S
U
B
R
O
U
T
I
N
E

p
o
i
n
t
s
w
a
p
(

a
,

b

)

T
Y
P
E
(
p
o
i
n
t
)

:
:

a
,

b

.
.
.

E
N
D

S
U
B
R
O
U
T
I
N
E

p
o
i
n
t
s
w
a
p

!
s
u
b
r
o
u
t
i
n
e
s

i
s
w
a
p

a
n
d

r
s
w
a
p

E
N
D

M
O
D
U
L
E

c
a
r
t
e
s
i
a
n

7.10 O
verloading operators

R
eferencing one of several procedures through a generic interface is know

n as overloading; it is the
generic nam

e that is overloaded. E
xactly w

hich procedure is invoked depends on the argum
ents passed

in the invoking statem
ent. In a sim

ilar w
ay to the overloading of procedure nam

es, the existing operators
(+

, -, *, etc.) m
ay be overloaded. T

his is usually done to define the effects of certain operators on
derived data types.

O
perator overloading is best defined in a m

odule and requires an interface block of the form
:

I
N
T
E
R
F
A
C
E

O
P
E
R
A
T
O
R
(

o
p
e
r
a
t
o
r

)

i
n
t
e
r
f
a
c
e
_
c
o
d
e

E
N
D

I
N
T
E
R
F
A
C
E

w
here operator is the operator to be overloaded and the interface_code is a function w

ith one or tw
o

IN
T

E
N

T
(IN

) argum
ents. F

or exam
ple:

M
O
D
U
L
E

s
t
r
i
n
g
s

I
N
T
E
R
F
A
C
E

O
P
E
R
A
T
O
R

(

/

)

M
O
D
U
L
E

P
R
O
C
E
D
U
R
E

n
u
m

E
N
D

I
N
T
E
R
F
A
C
E

C
O
N
T
A
I
N
S

I
N
T
E
G
E
R

F
U
N
C
T
I
O
N

n
u
m
(

s
,

c

)

C
H
A
R
A
C
T
E
R
(
l
e
n
=
*
)
,

I
N
T
E
N
T
(
I
N
)

:
:

s

C
H
A
R
A
C
T
E
R
,

I
N
T
E
N
T
(
I
N
)

:
:

c

n
u
m

=

0

D
O

i
=
1
,
L
E
N
(

s

)

I
F
(

s
(
i
:
i
)
=
=
c

)

n
u
m
=
n
u
m
+
1

E
N
D

D
O

E
N
D

F
U
N
C
T
I
O
N

n
u
m

E
N
D

M
O
D
U
L
E

s
t
r
i
n
g
s

U
sually, the / operator is not defined for characters or strings but the m

odule strings contains an
interface and defining function to allow

 a string to be divide by a character. T
he result of the operation is

the num
ber of tim

es the character appears in the string:

U
S
E

s
t
r
i
n
g
s

.
.
.

i

=

‘
h
e
l
l
o

w
o
r
l
d
’
/
’
l
’

!
i
=
3

i

=

‘
h
e
l
l
o

w
o
r
l
d
’
/
’
o
’

!
i
=
2

i

=

‘
h
e
l
l
o

w
o
r
l
d
’
/
’
z
’

!
i
=
0

7.11 D
efining operators

A
s w

ell as overloading existing operators, it is possible to define new
 operators. T

his is particularly
useful w

hen m
anipulating derived data types. A

ny new
 operator(s) have the form

.nam
e. and their effect

is defined by a function. Just as w
ith overloaded operators, the defining function requires an

IN
T

E
R

F
A

C
E

 O
P

E
R

A
T

O
R

 block and one or tw
o non-optional IN

T
E

N
T

(IN
) argum

ents, for exam
ple:

M
O
D
U
L
E

c
a
r
t
e
s
i
a
n

T
Y
P
E

p
o
i
n
t

R
E
A
L

:
:

x
,

y

E
N
D

T
Y
P
E

p
o
i
n
t

I
N
T
E
F
A
C
E

O
P
E
R
A
T
O
R

(

.
D
I
S
T
.

)

M
O
D
U
L
E

P
R
O
C
E
D
U
R
E

d
i
s
t

E
N
D

I
N
T
E
R
F
A
C
E

C
O
N
T
A
I
N
S

R
E
A
L

F
U
N
C
T
I
O
N

d
i
s
t
(

a
,

b

)

T
Y
P
E
(
p
o
i
n
t
)

I
N
T
E
N
T
(
I
N
)

:
:

a
,

b

d
i
s
t

=

S
Q
R
T
(

(
a
%
x
-
b
%
x
)
*
*
2

+

(
a
%
y
-
b
%
y
)
*
*
2

)

E
N
D

F
U
N
C
T
I
O
N

d
i
s
t

E
N
D

M
O
D
U
L
E

c
a
r
t
e
s
i
a
n

T
he operator .D

IS
T

. is used to find the distance betw
een tw

o points. T
he operator is only defined for the

data type point, using it on any other data type is illegal. Just as w
ith overloaded operators, the interface

and defining function are held in a m
odule. It m

akes sense to keep the derived data type and associated
operator(s) together.

A
ny program

 unit m
ay m

ake use of the data type point and the operator .D
IS

T
. by using the m

odule
cartesian, for exam

ple:

U
S
E

c
a
r
t
e
s
i
a
n

T
Y
P
E
(
p
o
i
n
t
)

:
:

a
,

b

R
E
A
L

:
:

d
i
s
t
a
n
c
e

.
.
.

d
i
s
t
a
n
c
e

=

a

.
D
I
S
T
.

b

7.12 A
ssignm

ent overloading

It is possible to overload the m
eaning of the assignm

ent operator (=
) for derived data types. T

his again
requires an interface, this tim

e to a defining subroutine. T
he subroutine m

ust have tw
o, non-optional

argum
ents, the first m

ust have IN
T

E
N

T
(IN

O
U

T
) or IN

T
E

N
T

(O
U

T
); the second m

ust have
IN

T
E

N
T

(IN
). F

or exam
ple:

M
O
D
U
L
E

c
a
r
t
e
s
i
a
n

T
Y
P
E

p
o
i
n
t

R
E
A
L

:
:

x
,

y

E
N
D

T
Y
P
E

p
o
i
n
t

I
N
T
E
F
A
C
E

A
S
S
I
G
N
M
E
N
T
(

=

)

M
O
D
U
L
E

P
R
O
C
E
D
U
R
E

m
a
x
_
p
o
i
n
t

E
N
D

I
N
T
E
R
F
A
C
E

C
O
N
T
A
I
N
S

S
U
B
R
O
U
T
I
N
E

m
a
x
_
p
o
i
n
t
(

a
,

p
t

)

R
E
A
L
,

I
N
T
E
N
T
(
O
U
T
)

:
:

a

T
Y
P
E
(
p
o
i
n
t
)
,

I
N
T
E
N
T
(
I
N
)

:
:

p
t

a

=

M
A
X
(

p
t
%
x
,

p
t
%
y

)

E
N
D

S
U
B
R
O
U
T
I
N
E

m
a
x
_
p
o
i
n
t

E
N
D

M
O
D
U
L
E

c
a
r
t
e
s
i
a
n

U
sing the m

odule cartesian allow
s a program

 unit to assign a type point to a type real. T
he real variable

w
ill have the largest value of the com

ponents of the point variable. F
or exam

ple:

U
S
E

c
a
r
t
e
s
i
a
n

T
Y
P
E
(
p
o
i
n
t
)

:
:

a

=

p
o
i
n
t
(
1
.
7
,

4
.
2
)

R
E
A
L

:
:

c
o
o
r
d

.
.
.

c
o
o
r
d

=

a

!
c
o
o
r
d

=

4
.
2

7.13 Scope

7.13.1 Scoping units

T
he scope of a nam

ed entity (variable or procedure) is that part of a program
 w

ithin w
hich the nam

e or
label is unique. A

 scoping unit is one of the follow
ing:

A
 derived data type definition.

A
n interface block, excluding any derived data type definitions and interface blocks w

ithin it.

A
 program

 unit or internal procedure, excluding any derived data type definitions and interfaces.

A
ll variables, data types, labels, procedure nam

es, etc. w
ithin the sam

e scoping unit m
ust have a

different nam
es. E

ntities w
ith the sam

e nam
e, w

hich are in different scoping units, are alw
ays separate

from
 one another.

7.13.2 L
abels and nam

es

A
ll program

s and procedures have their ow
n labels (e.g. see F

O
R

M
A

T
 statem

ents later). T
herefore it is

possible for the sam
e label to appear in different program

 units or internal procedures w
ithout

am
biguity. T

he scope of a label is the m
ain program

 or a procedure, excluding any internal procedures.

T
he scope of a nam

e (for say a variable) declared in a program
 unit is valid from

 the start of the unit
through to the unit’s E

N
D

 statem
ent. T

he scope of a nam
e declared in the m

ain program
 or in an

external procedure extends to all internal procedures unless redefined by the internal procedure. T
he

scope of a nam
e declared in an internal procedure is only the internal procedure itself - not other internal

procedures.

T
he scope of a nam

e declared in a m
odule extends to all program

 units that use that m
odule, except

w
here an internal procedure re-declares the nam

e.

T
he nam

es of program
 units are global and m

ust therefore be unique. T
he nam

e of a program
 unit m

ust
also be different from

 all entities local to that unit. T
he nam

e of an internal procedure extends
throughout the containing program

 unit. T
herefore all internal procedures w

ithin the sam
e program

 unit
m

ust have different nam
es.

T
he follow

ing show
s an exam

ple of scoping units:

M
O
D
U
L
E

s
c
o
p
e
1

!
s
c
o
p
e

1

.
.
.

!
s
c
o
p
e

1

C
O
N
T
A
I
N
S

!
s
c
o
p
e

1

S
U
B
R
O
U
T
I
N
E

s
c
o
p
e
2
(
)

!
s
c
o
p
e

2

T
Y
P
E

s
c
o
p
e
3

!
s
c
o
p
e

3

.
.
.

!
s
c
o
p
e

3

E
N
D

T
Y
P
E

s
c
o
p
e
3

!
s
c
o
p
e

3

I
N
T
E
R
F
A
C
E

!
s
c
o
p
e

3

.
.
.

!
s
c
o
p
e

4

E
N
D

I
N
T
E
R
F
A
C
E

!
s
c
o
p
e

3

R
E
A
L

:
:

a
,

b

!
s
c
o
p
e

3

1
0

.
.
.

!
s
c
o
p
e

3

C
O
N
T
A
I
N
S

!
s
c
o
p
e

2

F
U
N
C
T
I
O
N

s
c
o
p
e
5
(
)

!
s
c
o
p
e

5

R
E
A
L

:
:

b

!
s
c
o
p
e

5

b

=

a
+
1

!
s
c
o
p
e

5

1
0

.
.
.

!
s
c
o
p
e

5

E
N
D

F
U
N
C
T
I
O
N

!
s
c
o
p
e

5

E
N
D

S
U
B
R
O
U
T
I
N
E

!
s
c
o
p
e

2

E
N
D

M
O
D
U
L
E

!
s
c
o
p
e

1

7.14 E
xercises

1.
W

rite a program
 w

ith a single function to convert tem
peratures from

 F
ahrenheit to C

entigrade. In
the body of the m

ain program
 read in the tem

perature to be converted, and output the result. T
he

actual calculation is to be done in a function.

a) W
rite an internal function w

hich requires no actual argum
ents, but w

hich uses host association
to access the value to be converted. T

he result of the function is the converted tem
perature.

b) W
rite an external function w

hich requires the tem
perature to be converted to be passed as a

single argum
ent. A

gain the function result is the converted tem
perature. D

o not forget to include
an interface block in the m

ain program
.

U
se the follow

ing form
ula to convert from

 F
ahrenheit to C

entigrade:

2.
W

rite a program
 w

ith a single subroutine to sort a list of integer num
bers into order. In the m

ain
program

 read a list of random
 integers (about 5) into an array, call the subroutine to perform

 the
sort, and output the array.

a) W
rite an internal subroutine w

hich requires no actual argum
ents, but w

hich uses host
association to access the array to be sorted.

b) W
rite an external subroutine w

hich requires that the array to be sorted be passed as an
argum

ent. T
he external subroutine w

ill require an interface block.

U
se the follow

ing selection sort algorithm
 to sort the values in an array a:

I
N
T
E
G
E
R

:
:

a
(
5
)
,

t
m
p

I
N
T
E
G
E
R

:
:

j
,

l
a
s
t
,

s
w
a
p
_
i
n
d
e
x
(
1
)

l
a
s
t

=

S
I
Z
E
(

a

)

D
O

j
=
1
,

l
a
s
t
-
1

s
w
a
p
_
i
n
d
e
x

=

M
I
N
L
O
C
(

a
(
j
:
l
a
s
t
)

)

t
m
p

=

a
(

j

)

a
(

j

)

=

a
(

(
j
-
1
)
+
s
w
a
p
_
i
n
d
e
x
(
1
)

)

a
(

(
j
-
1
)
+
s
w
a
p
_
i
n
d
e
x
(
1
)

)

=

t
m
p

E
N
D

D
O

T
he selection sort algorithm

 passes once through the array to be sorted, stopping at each elem
ent

in turn. A
t each elem

ent the rem
ainder of the array is checked to find the elem

ent w
ith the

m
inim

um
 value, this is then sw

apped w
ith the current array elem

ent.

3.
W

rite a program
 w

hich declares three rank one, real arrays each w
ith 5 elem

ents and that uses

array constructors to set a random
 value for each elem

ent (say betw
een 1 and 20) for each array.

W
rite an internal subroutine w

hich finds the m
axim

um
 value in an array (use the M

A
X

 and
M

A
X

V
A

L
 intrinsic function) and reports and S

A
V

E
s that value. C

all the subroutine once for each
array, the final call should report the m

axim
um

 value from
 all arrays.

4.
C

hange the subroutine in w
ritten in 3 to accept arrays of any size (if you have not already done

so). T
est the new

 subroutine by calling it w
ith three arrays, each of different size.

5.
W

rite a program
 w

hich declares an rank 1, integer array and use a constructor to set values for
each elem

ent in the range -10 to 10. T
he program

 w
ill pass the array as an argum

ent to an external
subroutine, along w

ith tw
o optional argum

ents top and tail.

T
he subroutine is to replace any values in the array greater than top w

ith the value of top; sim
ilarly

the subroutine replaces any values low
er than tail w

ith tail. T
he values of top and tail are read in

by the m
ain program

. If either top or tail is absent on call then no respective action using the value
is taken. (R

em
em

ber it is good program
m

ing practice to refer to all optional argum
ents by

keyw
ord.)

6.
W

rite a m
odule to contain the definition for a derived data type point, w

hich consists of tw
o real

num
bers representing the x an y coordinates of that point. A

long w
ith this declaration, include a

global param
eter representing the origin at (0.0,0.0).

T
he m

odule should also contain a function to calculate the distance betw
een tw

o arbitrary points
(this is done earlier in the notes, as an operator). W

rite a program
 to read in an x and y coordinate

and calculate its distance from
 the origin.

7.
U

sing the selection sort algorithm
 in question 2 w

rite a m
odule containing tw

o subroutines, one
w

hich sorts real arrays the other w
hich sorts integer arrays (both of rank one). T

he m
odule should

provide a generic interface to both subroutines. C
heck the m

odule and the generic interface by
w

riting a program
 that uses the m

odule.

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

8 Interactive Input and O
utput

T
his m

odule deals w
ith the interaction betw

een a user and the program
 via the standard input and output

devices (keyboard and screen). D
ata represented by characters, w

hich is a hum
an readable form

, are
transferred to and from

 the program
. D

uring the transfer process the data are converted to or from
 the

m
achine readable binary form

. In particular the layout or form
atting of the data w

ill be considered. A
subset of the form

atting facilities is presented as the full set is com
plicated and a num

ber of the features
are rarely used.

T
he process of I/O

 can be sum
m

arised as:

T
he internal hexadecim

al representation of a real num
ber m

ay be

B
E
1
D
7
D
B
F

w
hich corresponds to the real value

0
.
0
0
0
4
5
0

w
hich m

ay be w
ritten as

-
0
.
4
5
E
-
0
3

T
his conversion of the internal representation to a user readable form

 is know
n as form

atted I/O
 and

choosing the exact form
 of the character string is referred to as form

atting. T
he form

atting of I/O
 is the

underlying them
e of m

uch of this m
odule.

C
onsider the I/O

 statem
ents used in the previous m

odules:

8.1 F
O

R
M

A
T

 Statem
ent

T
he form

at statem
ent m

ay be used to read or w
rite data in a form

 other than the default form
at. A

 form
at

statem
ent is a labelled statem

ent and m
ay be used by a W

R
IT

E
 or R

E
A

D
 statem

ent w
ithin the sam

e
program

 unit by specifying the label num
ber as the second param

eter to either or by use of a keyw
ord,

for exam
ple:

R
E
A
D

(
*
,
1
0
0
)

i
,

j

W
R
I
T
E

(
*
,
1
0
0
)

i
,

j

R
E
A
D

(
*
,
F
M
T
=
2
0
0
)

x
,

y

W
R
I
T
E

(
*
,
2
0
0
)

x
,

y

.
.
.
.
.

1
0
0

F
O
R
M
A
T

(
2
I
)

2
0
0

F
O
R
M
A
T

(
2
F
1
0
.
6
)

F
orm

atting is som
etim

es know
n as I/O

 editing. T
he I/O

 is controlled using edit descriptors. T
he general

form
 of a F

O
R

M
A

T
 statem

ent is

l
a
b
e
l

F
O
R
M
A
T

(
f
l
i
s
t
)

w
here flist is a list of edit descriptors w

hich include

I
,
F
,
E
,
E
S
,
E
N
,
D
,
G
,
L
,
A
,
H
,
T
,
T
L
,
T
R
,
X
,
P
,
B
N
,
B
Z
,
S
P
,
S
S
,
S
,
/
,
:
,
’
,
(
,
)

only the follow
ing w

ill be covered

I
,
F
,
E
,
E
S
,
E
N
,
A
,
X
,
/
,
:
,
’
,
(
,
)

M
any edit descriptors can be prefixed by a repeat count and suffixed w

ith a fieldw
idth. T

hus in the tw
o

exam
ples given above, 2I and 2F

10.6, could be described as tw
o integers and tw

o floating-point real
num

bers w
ith fieldw

idths of 10.6 (a description follow
s).

T
he labelled F

O
R

M
A

T
 statem

ent m
ay be replaced by specifying the form

at descriptor list as a character

string directly in the W
R

IT
E

 or R
E

A
D

 statem
ent, as follow

s:

R
E
A
D

(
*
,
’
(
2
I
)
’
)

I
,

J

W
R
I
T
E

(
*
,
’
(
2
F
1
2
.
6
)
’
)

X
,

Y

T
his has the advantage of im

proved clarity, i.e. the reader does not have to look at tw
o statem

ents w
hich

m
ay not be consecutive in the source listing to determ

ine the effect of the I/O
 statem

ent. H
ow

ever,
form

at descriptor lists m
ay be used by m

ore than one I/O
 statem

ent and a labelled form
at statem

ent
reduces the risk of introducing inconsistencies betw

een the m
ultiple instances of the descriptor list.

8.2 E
dit D

escriptors

E
dit descriptors specify exactly how

 values should be converted into a character string on an output
device or internal file, or converted from

 a character string on an input device or internal file. T
he edit

descriptors are defined in term
s of the follow

ing key letters

a

r
e
p
e
a
t

c
o
u
n
t

w

w
i
d
t
h

o
f

f
i
e
l
d

-

t
o
t
a
l

n
u
m
b
e
r

o
f

c
h
a
r
a
c
t
e
r
s

m

n
u
m
b
e
r

o
f

d
i
g
i
t
s

d

d
i
g
i
t
s

t
o

r
i
g
h
t

o
f

d
e
c
i
m
a
l

p
o
i
n
t

e

n
u
m
b
e
r

o
f

d
i
g
i
t
s

i
n

e
x
p
o
n
e
n
t

T
he I/O

 statem
ent w

ill use as m
any of the edit descriptors as it requires to process all the item

s in the I/O
list. P

rocessing w
ill term

inate at the next edit descriptor w
hich requires a value from

 the I/O
 list.

8.2.1 Integer

I, Iw
, Iw

.m
 - integer data

M
ay be repeated i.e. aI, aIw

, aIw
.m

If w
 is too sm

all to represent the num
ber then on output w

 asterisks are printed and on input the
leftm

ost w
 digits are read

F
or exam

ple: I I6 I10.3 5I 4I6.4

I6.4 specifies a total of 6 characters including a sign w
ith a m

inim
um

 of 4 digits thus:

W
R
I
T
E

(
6
,
‘
(
I
1
0
.
6
)
‘
)

5
6

w
ould ouput tw

o spaces follow
ed by 0056

8.2.2 R
eal - F

ixed P
oint F

orm

F
ixed point notation for real num

bers

P
ossible form

s: F
, F

w
, F

w
.d aF

, aF
w

, aF
w

.d

If no decim
al point is supplied d digits are read as the fractional part.

F
or exam

ple: F
10.5 F

12.6 5F
14.7

F
12.6 specifies a total of 12 characters including decim

al point and w
here required a m

inus sign
w

ith 6 digits follow
ing the decim

al point, thus:

W
R
I
T
E
(
6
,
‘
(
2
F
1
2
.
6
)
‘
)

1
2
.
6
,

-
1
3
1
.
4
5
6
7
8
9
1

w
ould output ^^^12.600000 and -131.456789 w

here ^ represents a space

8.2.3 R
eal - E

xponential F
orm

F
loating point notation for real data

P
ossible form

s: E
, E

w
, E

w
.d, aE

, aE
w

, aE
w

.d

T
he total fieldw

ith w
 includes the signs and decim

al point

T
he E

 descriptor specifies a num
ber in the follow

ing form
 S

0.X
X

X
E

S
X

X
 w

here S
 signifies a sign,

X
 digits and the character E

 separates the m
antissa from

 the exponent

O
n output the exponent is adjusted to place the m

ost significant digit to the right of the decim
al

point eg. 0.123E
-2

T
w

o alternative form
s are available

E
N

 - E
ngineering - the exponent is alw

ays divisible by 3 and the value before the decim
al

point lies in the range 1..1000

E
S

 (S
cientific) - the value before the decim

al point alw
ays lies in the range 1..10

8.2.4 C
haracter

P
ossible form

s: A
, aA

, A
w

, aA
w

U
se to read or w

rite single characters or character strings

If a fieldw
ith w

 is greater than the num
ber of characters then the characters are right justified and

space filled

O
n input the character string does not need to be enclosed in quotes

8.2.5 Skip C
haracter P

ositions

aX
 - skip specified num

ber of characters

O
n input characters are ignored

O
n output the required num

ber of spaces is w
ritten

8.2.6 L
ogical

L
 - logical data

O
n input T

, F
, .T

R
U

E
., F

A
L

S
E

. are acceptable

O
n output T

 or F
 w

ill be w
ritten

8.2.7 O
ther Special C

haracters

/ specifies take a new
 line

: term
inate I/O

 if list exhausted

() group descriptors, norm
ally for repetition e.g. 4(I5.5,F

12.6)

‘ O
utput the character string specified

8.3 Input/O
utput L

ists

Input/O
utput lists are used to specify the quantities to be read in or w

ritten out. O
n output expressions

m
ay be used but variables are only perm

itted for input. Im
plied-D

O
 loops (see below

) m
ay be used for

either input or output. A
n array m

ay be specified as either to be processed in its entirety, or elem
ent by

elem
ent, or by subrange; for exam

ple:

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
1
0
)

:
:

A

R
E
A
D

(
*
,
*
)

I
(
1
)
,

I
(
2
)
,

I
(
3
)

R
E
A
D

(
*
,
*
)

I

R
E
A
D

(
*
,
*
)

I
(
1
:
3
)

A
rray elem

ents m
ay only appear once in an I/O

 list, for exam
ple:

I
N
T
E
G
E
R

:
:

I
(
1
0
)
,

K
(
3
)

K

=

(
/
1
,
2
,
1
/
)

R
E
A
D

(
*
,
*
)

I
(
K
)

w
ould be illegal as I(1) appears tw

ice.

8.3.1 D
erived D

ataT
ypes

I/O
 is perform

ed on derived data types as if the com
ponents w

ere specified in order. T
hus for P

 and T
 of

type P
O

IN
T

 and T
R

IA
N

G
L

E
 respectively, w

here

T
Y
P
E

P
O
I
N
T

R
E
A
L

X
,

Y

E
N
D

T
Y
P
E

T
Y
P
E

T
R
I
A
N
G
L
E

T
Y
P
E

(
P
O
I
N
T
)

A
,

B
,

C

E
N
D

T
Y
P
E

the follow
ing tw

o statem
ents are equivalent

R
E
A
D

(
*
,
*
)

P
,

T

R
E
A
D

(
*
,
*
)

P
%
X
,

P
%
Y
,

T
%
A
%
X
,

T
%
A
%
Y
,

T
%
B
%
X
,

T
%
B
%
Y
,

T
%
C
%
X
,

T
%
C
%
Y

A
n object of a derived data type w

hich contains a pointer m
ay not appear in an I/O

 list. T
his restriction

prevents problem
s occurring w

ith recursive data types.

A
ny pointers in an I/O

 list m
ust be associated w

ith a target, the target is the data on w
hich the I/O

statem
ent operates, for exam

ple:

R
E
A
L
,

P
O
I
N
T
E
R

:
:

P
T
R
A
,

P
T
R
B

R
E
A
L
,

T
A
R
G
E
T

:
:

X

X

=

1
0
.
0

P
T
R
A

=
>

X

W
R
I
T
E

(
*
,
*
)

P
T
R
A

w
ould output the value 10.0, w

hereas

W
R
I
T
E

(
*
,
*
)

P
T
R
B

w
ould generate an error as P

T
R

B
 is not associated w

ith a target.

8.3.2 Im
plied D

O
 L

oop

T
he Im

plied-D
O

-list, w
hich is often used w

hen perform
ing I/O

 on an array, has the general form
:

(
d
o
-
o
b
j
e
c
t
-
l
i
s
t
,

d
o
-
v
a
r
=
e
x
p
r
,
e
x
p
r
[
,
e
x
p
r
]
)

T
his syntax is sim

ilar to the sim
ple indexed D

O
 loop described earlier. C

onsider the follow
ing

exam
ples:

I
N
T
E
G
E
R

:
:

J

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
1
0
)

:
:

A

R
E
A
D

(
*
,
*
)

(
A
(
J
)
,
J
=
1
,
1
0
)

W
R
I
T
E

(
*
,
*
)

(
A
(
J
)
,

J
=
1
0
,
1
,
-
1
)

T
he first statem

ent w
ould read 10 values in to each elem

ent of I. T
he second statem

ent w
ould w

rite all
10 values of I in reverse order. T

he im
plied-do-list m

ay also be nested

I
N
T
E
G
E
R

:
:

I
,

J

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
1
0
,
1
0
)

:
:

B

W
R
I
T
E

(
*
,
*
)

(
(
B
(
I
,
J
)
,
I
=
1
,
1
0
)
,

J
=
1
,
1
0
)

N
ote:N

o do-var m
ay be a do-var of any im

plied-do-list in w
hich it is contained, nor be associated w

ith
such a do-var (eg. pointer association).

In an input im
plied-do-list a variable w

hich is an item
 in a do-object-list m

ay not be a do-var of
any im

plied-do-list in w
hich it is contained.

8.4 N
am

elist

T
his is a facility for grouping variables for I/O

. T
he rules governing the use of N

A
M

E
L

IS
T

 are fairly
com

plex so, for the scope of this course, only explicitly declared variables w
ill be used, pointers and

allocatable arrays w
ill not be covered. T

he use of N
A

M
E

L
IS

T
 for output only w

ill be considered as this
can be useful for program

 testing and debugging. It’s use on input is slightly m
ore com

plicated and is
best considered only w

here necessary.

T
he N

A
M

E
L

IS
T

 statem
ent is used to define a group of variables as follow

s:

N
A
M
E
L
I
S
T

n
a
m
e
l
i
s
t
-
s
p
e
c

w
here nam

elist-spec is

/
n
a
m
e
l
i
s
t
-
g
r
o
u
p
-
n
a
m
e
/

v
a
r
i
a
b
l
e
-
n
a
m
e
-
l
i
s
t

for exam
ple

N
A
M
E
L
I
S
T

/
W
E
E
K
/

M
O
N
,

T
U
E
S
,

W
E
D
,
T
H
U
R
S
,

F
R
I

T
he list m

ay extended w
ithin the sam

e scoping unit by repeating the nam
elist-group-nam

e on m
ore than

one statem
ent, as follow

s:

N
A
M
E
L
I
S
T

/
W
E
E
K
/

S
A
T
,

S
U
N

M
ore than one group m

ay be defined in one N
A

M
E

L
IS

T
 statem

ent but this feature should not be used.
V

ariables should be declared before appearing in a N
A

M
E

L
IS

T
 group. V

ariables w
ith the P

R
IV

A
T

E
and P

U
B

L
IC

 attributes should not appear in the sam
e nam

elist-group. T
he nam

elist-group m
ay be used

in place of the form
at specifier in an I/O

 statem
ent. O

nly the W
R

IT
E

 statem
ent is considered here.

W
R
I
T
E

(
*
,
N
M
L
=
W
E
E
K
)

w
ill produce

&
W
E
E
K

S
U
N
=
1
,

M
O
N
=
2
,

T
U
E
S
=
3
,

.
.
.
.
.
/

w
here

I
N
T
E
G
E
R

:
:

S
U
N
,

M
O
N
,

T
U
E
S
,

.
.
.
.
.

S
U
N

=

1

M
O
N

=

2

.
.
.
.
.

N
ote the output record is an annotated list of the form

:

&

n
a
m
e
l
i
s
t
-
g
r
o
u
p
-
n
a
m
e

n
a
m
e
l
i
s
t
-
v
a
r
i
a
b
l
e
=
v
a
l
u
e

{
,
n
a
m
e
l
i
s
t
-
v
a
r
i
a
b
l
e
=
v
a
l
u
e
}

/

T
his record form

at m
ust be used for input.

A
rrays m

ay also be specified, for exam
ple

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
1
0
)

:
:

I
T
E
M
S

N
A
M
E
L
I
S
T

/
G
R
O
U
P
/

I
T
E
M
S

I
T
E
M
S
(
1
)

=

1

W
R
I
T
E

(
*
,

N
M
L
=
G
R
O
U
P
)

w
ould produce

&

G
R
O
U
P

I
T
E
M
S
(
1
)
=
1
,

I
T
E
M
S
(
2
:
1
0
)
=
0

/

8.5 N
on-A

dvancing I/O

T
he norm

al action of an I/O
 statem

ent is to advance to the next record on com
pletion. T

hus on input if a
record is only partially read the rest of the input record is discarded. O

n output a w
rite statem

ent w
ill

com
plete w

ith the cursor positioned at the start of a new
 line. N

on-advancing I/O
 perm

its records to be
read in sections (for exam

ple a long record of unknow
n length) or to create a neat user-interface w

here a
prom

pt for input and the user’s response appear on the sam
e line.

T
here is a com

plex set of rules covering the use of non-advancing I/O
 and its various associated

keyw
ords. T

his section only deals w
ith the screen m

anagem
ent aspects of this topic.

T
he A

D
V

A
N

C
E

 keyw
ord is used in w

rite or read statem
ents as follow

s:

R
E
A
D
(
*
,
*
,
A
D
V
A
N
C
E
=
’
Y
E
S
’
)

.
.
.

W
R
I
T
E

(
*
,
*
,

A
D
V
A
N
C
E
=
’
N
O
’
)

.
.
.
.

T
here are tw

o optional keyw
ords, E

O
R

 and S
IZ

E
, w

hich have the form
:

E
O
R
=
e
o
r
-
l
a
b
e
l

S
I
Z
E
=
i
n
t
e
g
e
r
-
v
a
r
i
a
b
l
e

T
he E

O
R

 keyw
ord specifies a labelled statem

ent to w
hich control is passed if an error occurs (see E

R
R

keyw
ord later) or if the end of record is encountered. T

he S
IZ

E
 keyw

ord specifies an integer variable
w

hich is set to the num
ber of characters read.

B
y default unfilled characters in an input record are padded out w

ith blank characters but these
characters are not included in the value assigned to S

IZ
E

. T
he P

A
D

 keyw
ord to the O

P
E

N
 statem

ent
(see later) m

ay be used to override the default action.

E
xam

ples.

(i)

W
R
I
T
E
(
*
,
*
,
A
D
V
A
N
C
E
=
’
N
O
’
)

’
E
n
t
e
r

n
e
w

v
a
l
u
e
:

’

R
E
A
D
(
*
,
*
)

I

If the user enters the value 10 this w
ould appear on the screen as

E
n
t
e
r

n
e
w

v
a
l
u
e
:

1
0

(ii)

C
H
A
R
A
C
T
E
R
(
L
E
N
=
3
2
)

:
:

f
i
l
e
n
a
m
e

I
N
T
E
G
E
R

:
:

l
e
n
g
t
h

b
b
:

D
O

W
R
I
T
E

(
*
,
*
,

A
D
V
A
N
C
E
=
’
N
O
’
)

’
F
i
l
e
n
a
m
e
?

’

R
E
A
D
(
*
,
*
,
A
D
V
A
N
C
E
=
’
N
O
’
,
E
O
R
=
2
0
,

S
I
Z
E
=
l
e
n
g
t
h
)

f
i
l
e
n
a
m
e

O
P
E
N
(
1
0
,

F
I
L
E
=
f
i
l
e
n
a
m
e
(
1
:
l
e
n
g
t
h
)
,
.
.
)

E
X
I
T

b
b

2
0

W
R
I
T
E
(
*
,
’
(
/
A
,
I
)
’
)

’
E
r
r
o
r
:

m
a
x
i
m
u
m

l
e
n
g
t
h

e
x
c
e
e
d
e
d
.
’
,
l
e
n
g
t
h

E
N
D

D
O

8.6 E
xercises

1.
W

hat values w
ould be read into the variables in the R

E
A

D
 statem

ent in the follow
ing:

R
E
A
L

:
:

a
,

b
,

c

R
E
A
L
,

D
I
M
E
N
S
I
O
N

(
1
:
5
)

:
:

a
r
r
a
y

I
N
T
E
G
E
R

:
:

i
,

j
,

k

R
E
A
D
(
*
,
*
)

a
,

b
,

c

R
E
A
D

(
*
,
*
)

i
,

j
,

k
,

a
r
r
a
y

given the follow
ing input records:

1
.
5

3
.
4

5
.
6

3

6

6
5

2
*
0

4
5

3
*
2
3
.
7

0

0

2.
G

iven the statem
ents:

R
E
A
L

:
:

a

C
H
A
R
A
C
T
E
R
(
L
E
N
=
2
)

:
:

s
t
r
i
n
g

L
O
G
I
C
A
L

:
:

o
k

R
E
A
D

(
*
,
’
(
F
1
0
.
3
,
A
2
,
L
1
0
)
’
)

a
,

s
t
r
i
n
g
,

o
k

w
hat w

ould be read into a, string and ok if the follow
ing input records

w
ere used?

(a) bbb5.34bbbN
O

b.true.

(b) 5.34bbbbbbY
bbF

bbbbb

(b) b6bbbbbb3211bbbbbbT

(d) bbbbbbbbbbbbbbbbbbF

w
here b represents a space or blank character.

3.
W

rite statem
ents to output all 100 elem

ents of a one dim
ensional array of real num

bers w
ith 10

num
bers per line each in a total fieldw

idth of 12 and having tw
o spaces betw

een each num
ber. T

he
array should be output in fixed point notation w

ith 4 characters follow
ing the decim

al point and
then in floating point notation w

ith three significant digits.

H
int: A

n im
plied D

O
 loop is useful w

hen grouping array elem
ents on the sam

e line.

W
rite a program

 w
hich w

ill initialise all the elem
ents of a suitably declared array to 123.456789

and w
ill test the output statem

ents you have just w
ritten. W

hat w
ould happen if the initial value

w
as -123456789.789?

4.
A

 file contains records in tw
o groups w

ith each group headed by a specification of the form
at in

w
hich the follow

ing data is to be read. E
ach group of data is term

inated by the special value 99.9.
W

rite a program
 to read in all the data. T

he general form
 of the input is know

n i.e.. he first group
w

ill contain 3 reals and an integer and the second group one real and an integer. E
xam

ple data:

’
(
3
F
6
.
4
,
I
5
)
’

3
.
4
0

5
.
6

7
.
9

1
0

4
.
5
2

6
.
3

3
.
2

1
1

9
9
.
9

0

0

0

’
(
F
6
.
1
,
I
1
0
)
’

4
.
2
3

9

5
.
8
9

6

9
9
.
9

0

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

9 F
ile-based Input and O

utput

In the previous m
odules all input and output w

as perform
ed to the default devices nam

ely the screen and
the keyboard. In m

any circum
stances this is not the m

ost appropriate action, i.e. tem
porary storage of

large am
ounts of interm

ediate results; large am
ounts of input or output; output from

 one program
 used

as the input of another; a set of input data w
hich is used m

any tim
es.

A
 m

echanism
 is required w

hich perm
its a program

m
er to direct input to be perform

ed on data from
 a

source other than the keyboard (during execution tim
e) and to store output in a m

ore "perm
anent" and

capacious form
. T

his is generally achieved by utilizing the com
puter’s filestore w

hich is a m
anaged

collection of files. A
 file such as the source program

 or a set of I/O
 data is norm

ally form
atted, w

hich
m

eans it consists of an ordered set of character strings separated by an end of record m
arker. A

form
atted file m

ay be view
ed using an editor or printed on a printer. A

n unform
atted file (see later) has

no discernable structure and should be regarded as single stream
 of bytes of raw

 data. A
n unform

atted
file is norm

ally only view
ed using a suitable user w

ritten program
.

9.1 U
nit N

um
bers

F
ortran I/O

 statem
ents access files via a unique num

eric code or unit num
ber. E

ach unit num
ber

specifies a data channel w
hich m

ay be connected to a particular file or device. T
he program

 m
ay set up a

connection specifically, or use the defaults, and m
ay at any tim

e break and redefine the connection.
T

hese num
bers m

ust lie in the range 1..99.

U
nit num

bers m
ay be specified as:

an integer constant e.g. 10

an integer expression e.g. N
U

N
IT

, N
U

N
IT

+
I

an asterisk * denoting the default unit

the nam
e of an internal file

A
 statem

ent such as a R
E

A
D

, W
R

IT
E

 or O
P

E
N

 is directed to use a particular unit by specifying the
U

N
IT

 keyw
ord as follow

s: U
N

IT
=

10 or U
N

IT
=

N
U

N
IT

. T
he unit num

ber m
ay also be specified as a

positional argum
ent as show

n later.

S
om

e com
puter system

s have a nam
ing convention w

hich w
ill "m

ap" unit num
bers to default file nam

es,
for exam

ple w
hen using unit num

ber 10 on a V
A

X
/V

M
S

 system
 this w

ill m
ap to a file called

F
O

R
010.D

A
T

 and on a U
nix to a file called fort.10.

A
lso som

e com
puter system

s provide a form
 of external variable w

hich m
ay be defined prior to

execution and the contents of the variable used as a filenam
e. A

gain on a V
A

X
/V

M
S

 system
 accessing

unit 10 w
ill cause an external variable F

O
R

010 to be checked for a filenam
e.

S
ystem

 specific inform
ation such as this is provided in the language reference m

anual on m
ost system

s.

9.2 R
E

A
D

 and W
R

IT
E

 Statem
ents

9.2.1 R
E

A
D

 Statem
ent

T
here are tw

o form
s of the R

E
A

D
 statem

ent, w
hich correspond to the P

R
IN

T
 and W

R
IT

E
 output

statem
ents covered later.

R
E
A
D

f
o
r
m
a
t
-
s
p
e
c
,
I
/
O

l
i
s
t

!
T
h
i
s

f
o
r
m

i
s

n
o
t

u
s
e
d

i
n

t
h
i
s

c
o
u
r
s
e

orR
E
A
D

(
c
l
i
s
t
)

[
I
/
O

l
i
s
t
]

w
here clist is defined as

[
U
N
I
T
=
]

u
n
i
t
-
n
u
m
b
e
r
,

[
F
M
T
=
]

f
o
r
m
a
t
-
s
p
e
c

[
,
R
E
C
=

r
e
c
o
r
d
-
n
u
m
b
e
r
]

[
,
I
O
S
T
A
T
=
i
o
s
]

[
,
A
D
V
A
N
C
E
=
a
d
v
]

[
,
S
I
Z
E
=
i
n
t
e
g
e
r
-
v
a
r
i
a
b
l
e
]

[
,
E
O
R
=
l
a
b
e
l
]

[
,
E
N
D
=
l
a
b
e
l
]

[
,
E
R
R
=
l
a
b
e
l
]

F
or exam

ple:

R
E
A
D

*
,
I
,
J

R
E
A
D

*
,
L
I
N
E

R
E
A
D

1
0
0
,

I

R
E
A
D

(
*
,
*
)

A
,
B
,
C

R
E
A
D

(
5
,
*
)

L
I
N
E

R
E
A
D

(
5
,
1
0
0
)

X
,

Y
,

Z

R
E
A
D

(
U
N
I
T
=
1
0
,
F
M
T
=
1
0
0
,
E
R
R
=
1
0
,
I
O
S
T
A
T
=
i
o
s
)

T
he unit num

ber and form
at-specifier m

ust be supplied and in the correct order but the other item
s are

optional. In the last exam
ple, if an error occurrs, control passes to the statem

ent labelled 10 and the
variable specified as ios w

ill return a positive, system
 dependent integer. T

he value 0 w
ill be returned if

the operation com
pletes successfully.

9.2.2 W
R

IT
E

 Statem
ent

T
here are tw

o output statem
ents: the P

R
IN

T
 and the W

R
IT

E
 statem

ent. O
nly the W

R
IT

E
 statem

ent is
covered in this course as the P

R
IN

T
 statem

ent is sim
ply a lim

ited form
 of the W

R
IT

E
 statem

ent. T
he

W
R

IT
E

 statem
ent m

ay be list-directed or form
at-directed and has the general form

:

W
R
I
T
E

(
c
l
i
s
t
)

[
I
/
O

l
i
s
t
]

w
here clist is defined as

[
U
N
I
T
=
]

u
n
i
t
-
n
u
m
b
e
r
,

[
F
M
T
=
]

f
o
r
m
a
t
-
s
p
e
c

[
,
R
E
C
=

r
e
c
o
r
d
-
n
u
m
b
e
r
]

[
,
I
O
S
T
A
T
=
i
o
s
]

[
A
D
V
A
N
C
E
=
a
d
v
]

[
,
S
I
Z
E
=
i
n
t
e
g
e
r
-
v
a
r
i
a
b
l
e
]

[
,
E
O
R
=
l
a
b
e
l
]

[
,
E
R
R
=
l
a
b
e
l
]

F
or exam

ple:

W
R
I
T
E

(
*
,
*
)

W
R
I
T
E

(
6
,
*
)

I
,
J

W
R
I
T
E

(
6
,
1
0
0
)

I

W
R
I
T
E

(
6
,
*
,
E
R
R
=
1
0
)

L
I
N
E

W
R
I
T
E

(
U
N
I
T
=
f
i
l
e
1
,
F
M
T
=
1
0
0
,
R
E
C
=
r
e
c
o
r
d
n
u
m
b
e
r
,

E
R
R
=
1
0
)

n
e
w
l
i
n
e

9.3 O
P

E
N

 Statem
ent

T
he O

P
E

N
 statem

ent is used to connect a unit num
ber to a file specifying certain properties for that file

w
hich differ from

 the defaults. It can be used to create or connect to an existing file. In addition to the
standard form

 described som
e com

pliers m
ay provide a num

ber of non-standard additional keyw
ords.

C
om

m
on program

m
ing practice places all O

P
E

N
 statem

ents in a subroutine w
hich is called in the

initialization phase of the m
ain program

. O
P

E
N

 statem
ents invariably contain system

 specific file nam
es

and non-standard features thus, should the program
 be required to run on m

ore than one com
puter

system
, the O

P
E

N
 statem

ents m
ay be easily located.

T
he O

P
E

N
 statem

ent has the general form
:

O
P
E
N

(
u
,

[
o
l
i
s
t
]

)

w
here

u

i
s

a

v
a
l
i
d

u
n
i
t

n
u
m
b
e
r

s
p
e
c
i
f
i
e
r

(
w
i
t
h

o
r

w
i
t
h
o
u
t

t
h
e

k
e
y
w
o
r
d
)

o
l
i
s
t

i
s

a

l
i
s
t

o
f

k
e
y
w
o
r
d

c
l
a
u
s
e
s
:

k
e
y
w
o
r
d

"
=
"

v
a
l
u
e

{
"
,
"

k
e
y
w
o
r
d

"
=
"

v
a
l
u
e
}

F
or exam

ple:

O
P
E
N
(
1
0
)

O
P
E
N

(
U
N
I
T
=
1
0
)

O
P
E
N

(
U
N
I
T
=
I
F
I
L
E
)

T
he follow

ing keyw
ords are specified in the F

ortran 90 language standard:

F
I
L
E
=
f
i
l
e
n
a
m
e

w
here filenam

e is a valid filenam
e for the particular system

. N
ote that case sensitivity is system

 specific.
e.g. F

IL
E

=
’output.test’

S
T
A
T
U
S
=
s
t

w
here st m

ay be ’O
L

D
’, ’N

E
W

’, ’R
E

P
L

A
C

E
’, ’S

C
R

A
T

C
H

’ or ’U
N

K
N

O
W

N
’. If ’O

L
D

’ is specified the
file m

ust exist; if ’N
E

W
’ the file m

ust not exist; if ’R
E

P
L

A
C

E
’ and the file exists it w

ill be deleted
before a new

 file is created; and if ’S
C

R
A

T
C

H
’ the file w

ill be deleted w
hen closed. In general use

’O
L

D
’ for input and ’N

E
W

’ for output.

E
R
R
=
l
a
b
e
l

G
O

T
O

 label if an error occurs opening the file.

I
O
S
T
A
T
=
i
o
s

w
here ios is an integer variable w

hich is set to zero if the statem
ent is executed successfully or to an

im
plem

entation dependent constant otherw
ise.

F
O
R
M
=
f
m

w
here fm

 m
ay be ’F

O
R

M
A

T
T

E
D

’ or ’U
N

F
O

R
M

A
T

T
E

D
’, the default is ’F

O
R

M
A

T
T

E
D

’ for sequential
files and ’U

N
F

O
R

M
A

T
T

E
D

’ for direct access files.

A
C
C
E
S
S
=
a
c
c

w
here acc m

ay be ’S
E

Q
U

E
N

T
IA

L
’ or ’D

IR
E

C
T

’

R
E
C
L
=
r
l

w
here rl is the m

axim
um

 record length (positive integer) for a direct access file. F
or form

atted files this
is the num

ber of characters and for unform
atted it is usually the num

ber of bytes or w
ords (system

dependent).

B
L
A
N
K
=
b
l

w
here bl is either ’N

U
L

L
’ or ’Z

E
R

O
’ and determ

ines how
 blanks in a num

eric field are interpreted.

P
O
S
I
T
I
O
N
=
p
o
s

w
here pos m

ay be ’A
S

IS
’, ’R

E
W

IN
D

’ or ’A
P

P
E

N
D

’ w
hich are interpreted as positioning the file at the

position it w
as previously accessed, positioning the file at the start; and positioning the file after the

previously end of the file. D
efaults to A

S
IS

.

P
A
D
=
p
a
d

w
here pad m

ay be ’Y
E

S
’ or ’N

O
’. If ’Y

E
S

’ form
atted input is padded out w

ith blank characters; if ’N
O

’
the length of the input record should not be exceeded.

D
E
L
I
M
=
d
e
l

w
here del m

ay be ’A
P

O
S

T
R

O
P

H
E

’ or ’Q
U

O
T

E
’ or ’N

O
N

E
’ indicating w

hich character used w
hen

delim
iting character expressions in list-directed or N

A
M

E
L

IS
T

 output. D
efaults to ’N

O
N

E
’.

A
C
T
I
O
N
=
a
c
t

w
here act m

ay be ’R
E

A
D

’, ’W
R

IT
E

’ or ’R
E

A
D

W
R

IT
E

’ specifying the perm
itted m

odes of operation
on the file. D

efault is processor dependent.

F
or exam

ple:

O
P
E
N

(
U
N
I
T
=
1
0
,
F
I
L
E
=
’
f
i
b
o
n
a
c
c
i
.
o
u
t
’
)

O
P
E
N

(
U
N
I
T
=
1
1
,
F
I
L
E
=
’
f
i
b
o
n
a
c
c
i
.
o
u
t
’
,
S
T
A
T
U
S
=
’
N
E
W
’
,
E
R
R
=
1
0
)

.
.
.
.
.
.
.

1
0

C
O
N
T
I
N
U
E

W
R
I
T
E
(
6
,
*
)

’
E
r
r
o
r

o
p
e
n
i
n
g

f
i
l
e
:

f
i
b
o
n
a
c
c
i
.
o
u
t
.
’

O
P
E
N

(
U
N
I
T
=
1
2
,

F
I
L
E
=
’
s
t
u
d
e
n
t
.
r
e
c
o
r
d
s
’
,

S
T
A
T
U
S
=
’
O
L
D
’
,

&

A
C
C
E
S
S
=
’
D
I
R
E
C
T
’
,
R
E
C
L
=
2
0
0
,

F
O
R
M
=
’
F
O
R
M
A
T
T
E
D
’
,
&

E
R
R
=
2
0
,

I
O
S
T
A
T
=
I
O
S
)

.
.
.
.
.
.
.
.

2
0

C
O
N
T
I
N
U
E

I
F

(
E
R
R

.
G
E
.

0
)

T
H
E
N

W
R
I
T
E

(
6
,
*
)

&

’
E
r
r
o
r

o
p
e
n
i
n
g

f
i
l
e
:

s
t
u
d
e
n
t
.
r
e
c
o
r
d
s
.
’

W
R
I
T
E

(
6
,
*
)

’
I
O
S

=

’
,
I
O
S

E
N
D
I
F

S
T
O
P

If you are in any doubt about the default values for any of the fields of the O
P

E
N

 statem
ent, especially

as som
e are m

achine dependent, specify the required values. T
he com

binations of possible error
conditions, m

ean that careful thought should be given to the specification of O
P

E
N

 statem
ents and the

associated error statem
ents. S

pecifying som
e values alter the default values of others and som

e specifies
are m

utually exclusive, i.e. only one or the other but not both, for exam
ple R

E
C

L
 and

A
C

C
E

S
S

=
’S

E
Q

U
E

N
T

IA
L

’ m
ay not be used together.

9.4 C
L

O
SE

 statem
ent

T
his statem

ent perm
its the orderly disconnection of a file from

 a unit either at the com
pletion of the

program
, or so that a connection m

ay be m
ade to a different file or to alter a property of the file. T

he
C

L
O

S
E

 statem
ent has the general form

C
L
O
S
E

(
[
U
N
I
T
=
]
u

[
,
I
O
S
T
A
T
=
i
o
s
]

[
,
E
R
R
=
l
a
b
e
l
]

[
,
S
T
A
T
U
S
=
s
t
]
)

w
here st can be ’K

E
E

P
’ or ’D

E
L

E
T

E
’. T

he value ’K
E

E
P

’ cannot be applied to a file opened as
’S

C
R

A
T

C
H

’.

F
or exam

ple:

C
L
O
S
E

(
1
0
)

C
L
O
S
E

(
U
N
I
T
=
1
0
,

E
R
R
=
1
0
)

C
L
O
S
E

(
U
N
I
T
=
N
U
N
I
T
,

S
T
A
T
U
S
=
’
D
E
L
E
T
E
’
,
E
R
R
=
1
0
)

9.5 IN
Q

U
IR

E
 statem

ent

T
his statem

ent m
ay be used to check the status of a file or the connection to a file. It causes values to be

assigned to the variables specified in the inquiry-list w
hich indicate the status of the file w

ith respect to
the specified keyw

ords. T
he IN

Q
U

IR
E

 statem
ent has the general form

:

I
N
Q
U
I
R
E

(
i
n
q
u
i
r
y
-
l
i
s
t
)

w
here inquiry-list m

ay be either

F
I
L
E
=
f
n
a
m
e

orU
N
I
T
=
u
n
u
m

plus any com
bination of the (possible return values are given as a com

m
ent)

E
X
I
S
T
=
l
e
x

!

t
r
u
e

o
r

f
a
l
s
e

O
P
E
N
E
D
=
l
o
d

!

t
r
u
e

o
r

f
a
l
s
e

N
U
M
B
E
R
=
u
n
u
m

!

u
n
i
t

n
u
m
b
e
r

N
A
M
E
=
f
n
m

!

f
i
l
e
n
a
m
e

A
C
C
E
S
S
=
a
c
c

!

’
D
I
R
E
C
T
’

o
r

’
S
E
Q
U
E
N
T
I
A
L
’

S
E
Q
U
E
N
T
I
A
L
=
s
e
q

!

’
Y
E
S

o
r

’
N
O
’

D
I
R
E
C
T
=
d
i
r

!

’
Y
E
S
’

o
r

’
N
O
’

F
O
R
M
A
T
T
E
D
=
f
m
t

!

’
Y
E
S
’

o
r

’
N
O
’

U
N
F
O
R
M
A
T
T
E
D
=
u
n
f
m
t

!

’
Y
E
S
’

o
r

’
N
O
’

F
O
R
M
=
f
r
m

!

’
F
O
R
M
A
T
T
E
D
’

o
r
’
U
N
F
O
R
M
A
T
T
E
D
’

N
E
X
T
R
E
C
=
r
e
c
n

!

n
u
m
b
e
r

o
f

n
e
x
t

r
e
c
o
r
d

f
o
r

d
i
r
e
c
t

a
c
c
e
s
s

f
i
l
e
s

o
n
l
y

R
E
C
L
=
r
e
c
l

!

r
e
c
o
r
d

l
e
n
g
t
h

f
o
r

d
i
r
e
c
t

a
c
c
e
s
s

f
i
l
e
s

o
n
l
y

N
ote that recl, recn and unum

 and integer variables.

9.6 D
irect A

ccess F
iles

A
 direct access file is a random

 access table-like structure w
hich m

ay be inspected or am
ended. S

uch a
file m

ay be created and accessed using the R
E

C
L

 and A
C

C
E

S
S

=
’D

IR
E

C
T

’ keyw
ords on the O

P
E

N
statem

ent and R
E

C
 on the relevant R

E
A

D
 and W

R
IT

E
 statem

ents as follow
s:

C
H
A
R
A
C
T
E
R

(
L
E
N
=
2
0
0
)

:
:

S
T
A
F
F
R
E
C
O
R
D

O
P
E
N

(
U
N
I
T
=
1
0
,

F
I
L
E
=
’
S
T
A
F
F
.
R
E
C
O
R
D
S
’
,

&

R
E
C
L
=
2
0
0
,

A
C
C
E
S
S
=
’
D
I
R
E
C
T
’
,

.
.
.
.
.
.
)

R
E
A
D
(
U
N
I
T
=
1
0
,
R
E
C
=
2
0
)

S
T
A
F
F
R
E
C
O
R
D

W
R
I
T
E
(
U
N
I
T
=
1
0
,
R
E
C
=
2
0
)

S
T
A
F
F
R
E
C
O
R
D

T
he E

R
R

 and IO
S

T
A

T
 keyw

ords should be used to handle possible error conditions such as reading
beyond the end of file. O

ne lim
itation on a direct access file is that all the records m

ust be of fixed
length. O

n som
e com

puter system
s a direct access file m

ay not be created by a program
 but m

ust be
created using system

 com
m

ands prior to program
 execution. A

lso on som
e system

s such a file m
ay not

be extended by the program
 but m

ust also have a know
n fixed num

ber of records.

9.7 E
xercises

1.
C

om
plete the follow

ing statem
ent, w

hich w
ould open an unform

atted direct access file w
ith a

record length of 100 bytes

O
P
E
N
(
U
N
I
T
=
1
0
,
.
.
.
.
.
.
)

2.
W

rite a section of code w
hich w

ould open 10 files on the unit num
bers from

 20 to 29. T
he default

values should be used for all keyw
ords.

3.
W

rite sections of code to perform
 the follow

ing

(a) test for the existence of a file called T
E

M
P

.D
A

T

(b) test if a file has been opened on unit 10

(c) test to see if the file opened on unit 15 is a direct access file and if so w
hat the record length is .

T
he program

 fragm
ents should output the results in a suitable form

.

4.
W

rite a F
ortran program

 w
hich w

ill prom
pt the user for a file nam

e, open that file and then read
the file line by line outputting each line to the screen prefixed w

ith a line num
ber. U

se the file
w

hich contains the source of the program
 as a test file.

5.
W

rite a F
ortran program

 w
hich w

ill create a tem
porary direct access file, prom

pt for the nam
e of

an existing file and read that file sequentially w
riting each line to the next record of the tem

porary
direct access file. T

he program
 should then repeatedly prom

pt the user for a num
ber representing

the num
ber of a line in the input file and display that line on the screen. T

he program
 should halt

w
hen the num

ber 0 is entered. T
he program

 should handle all possible error conditions such as the
file does not exist or a line num

ber out of range is specified and inform
 the user accordingly.

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

10 D
ynam

ic arrays

S
o far all variables that have been used have been static variables, that is they have had a fix m

em
ory

requirem
ent, w

hich is specified w
hen the variable is declared. S

tatic arrays in particular are declared
w

ith a specified shape and extent w
hich cannot change w

hile a program
 is running. T

his m
eans that

w
hen a program

 has to deal w
ith a variable am

ount of data, either:

an array is dim
ensioned to the largest possible size that w

ill be required, or

an array is given a new
 extent, and the program

 re-com
plied every tim

e it is run.

In contrast dynam
ic (or allocatable) arrays are not declared w

ith a shape and initially have no associated
storage, but m

ay be allocated storage w
hile a program

 executes. T
his is a very pow

erful feature w
hich

allow
s program

s to use exactly the m
em

ory they require and only for the tim
e they require it.

10.1 A
llocatable arrays

10.1.1 Specification

A
llocatable arrays are declared in m

uch the sam
e w

ay as static arrays. G
eneral form

:

t
y
p
e
,

A
L
L
O
C
A
T
A
B
L
E

[
,
a
t
t
r
i
b
u
t
e
]

:
:

n
a
m
e

T
hey m

ust include the A
L

L
O

C
A

T
A

B
L

E
 attribute and the rank of the array, but cannot specify the

extend in any dim
ension or the shape in general. Instead a colon (:) is used for each dim

ension. F
or

exam
ple:

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
:
)
,

A
L
L
O
C
A
T
A
B
L
E

:
:

a

!
r
a
n
k

1

I
N
T
E
G
E
R
,

A
L
L
O
C
A
T
A
B
L
E

:
:

b
(
:
,
:
)

!
r
a
n
k

2

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
:
)
,

A
L
L
O
C
A
T
A
B
L
E

:
:

c

!
r
a
n
k

1

O
n declaration, allocatable arrays have no associated storage and cannot be referenced until storage has

been explicitly allocated.

10.1.2 A
llocating and deallocating storage

T
he A

L
L

O
C

A
T

E
 statem

ent associates storage w
ith an allocatable array:

A
L
L
O
C
A
T
E
(

n
a
m
e
(
b
o
u
n
d
s
)

[
,
S
T
A
T
]

)

if successful nam
e has the requested bounds (if present S

T
A

T
=

0).

if unsuccessful program
 execution stops (or w

ill continue w
ith S

T
A

T
>

0 if present).

it is possible to allocate m
ore than one array w

ith the sam
e A

L
L

O
C

A
T

E
 statem

ent, each w
ith different

bounds, shape or rank. If no low
er bound is specified then the default is 1. O

nly allocatable arrays w
ith

no associated storage m
ay be the subject of an A

L
L

O
C

A
T

E
 statem

ent, for exam
ple

n
=
1
0

A
L
L
O
C
A
T
E
(

a
(
1
0
0
)

)

A
L
L
O
C
A
T
E
(

b
(
n
,
n
)
,

c
(
-
1
0
:
8
9
)

)
.

T
he storage used by an allocatable array m

ay be released at any tim
e using the D

E
A

L
L

O
C

A
T

E
statem

ent:

D
E
A
L
L
O
C
A
T
E
(

n
a
m
e

[
,
S
T
A
T
]

)

If successful arraynam
e no longer has any associated storage (if present S

T
A

T
=

0)

If unsuccessful execution stops (or w
ill continue w

ith S
T

A
T

>
0 if present).

T
he D

E
A

L
L

O
C

A
T

E
 statem

ent does not require the array shape. It is possible to deallocate m
ore than

one array w
ith the sam

e D
E

A
L

L
O

C
A

T
E

 statem
ent, each array can have different bounds, shape or rank.

O
nly allocatable arrays w

ith associated storage m
ay be the subject of a D

E
A

L
L

O
C

A
T

E
 statem

ent.

T
he follow

ing statem
ents deallocate the storage from

 the previous exam
ple:

D
E
A
L
L
O
C
A
T
E

(

a
,

b

)

D
E
A
L
L
O
C
A
T
E

(

c
,

S
T
A
T
=
t
e
s
t

)

I
F

(
t
e
s
t

.
N
E
.

0
)

T
H
E
N

S
T
O
P

‘
d
e
a
l
l
o
c
a
t
i
o
n

e
r
r
o
r
’

E
N
D
I
F

It is good program
m

ing practice to deallocate any storage that has been reserved through the
A

L
L

O
C

A
T

E
 statem

ent. B
ew

are, any data stored in a deallocated array is lost perm
anently!

10.1.3 Status of allocatable arrays

A
llocatable arrays m

ay be in either one of tw
o states:

‘allocated’ - w
hile an array has associated storage.

‘not currently allocated’ - w
hile an array has no associated storage.

T
he status of an array m

ay be tested using the logical intrinsic function A
L

L
O

C
A

T
E

D
:

A
l
l
O
C
A
T
E
D
(

n
a
m
e

)

w
hich returns the value:

.T
R

U
E

. if nam
e has associated storage, or

.F
A

L
S

E
. otherw

ise.

F
or exam

ple:

I
F
(

A
L
L
O
C
A
T
E
D
(
x
)

)

D
E
A
L
L
O
C
A
T
E
(

x

)

or:

I
F
(

.
N
O
T
.

A
L
L
O
C
A
T
E
D
(

x

)

)

A
L
L
O
C
A
T
E
(

x
(
1
:
1
0
)

)

O
n declaration an allocatable array’s status is ‘not currently allocated’ and w

ill becom
e ‘allocated’ only

after a successful A
L

L
O

C
A

T
E

 statem
ent. A

s the program
 continues and the storage used by a particular

array is deallocated, so the status of the array returns to ‘not currently allocated’. It is possible to repeat
this cycle of allocating and deallocating storage to an array (possibly w

ith different sizes and extents
each tim

e) any num
ber of tim

es in the sam
e program

.

10.2 M
em

ory leaks

N
orm

ally, it is the program
 that takes responsibility for allocating and deallocating storage to (static)

variables, how
ever w

hen using dynam
ic arrays this responsibility falls to the program

m
er.

S
tatem

ents like A
L

L
O

C
A

T
E

 and D
E

A
L

L
O

C
A

T
E

 are very pow
erful. S

torage allocated through the
A

L
L

O
C

A
T

E
 statem

ent m
ay only be recovered by:

a corresponding D
E

A
L

L
O

C
A

T
E

 statem
ent, or

the program
 term

inating.

S
torage allocated to local variables (in say a subroutine or function) m

ust be deallocated before the
exiting the procedure. W

hen leaving a procedure all local variable are deleted from
 m

em
ory and the

program
 releases any associated storage for use elsew

here, how
ever any storage allocated through the

A
L

L
O

C
A

T
E

 statem
ent w

ill rem
ain ‘in use’ even though it has no associated variable nam

e!. S
torage

allocated, but no longer accessible, cannot be released or used elsew
here in the program

 and is said to be
in an ‘undefined’ state T

his reduction in the total storage available to the program
 called is a ‘m

em
ory

leak’.

S
U
B
R
O
U
T
I
N
E

s
w
a
p
(
a
,

b
)

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
:
)

:
:

a
,

b

R
E
A
L
,

A
L
L
O
C
A
T
A
B
L
E

:
:

w
o
r
k
(
:
)

A
L
L
O
C
A
T
E
(

w
o
r
k
(
S
I
Z
E
(
a
)
)

)

w
o
r
k

=

a

a

=

b

b

=

w
o
r
k

D
E
A
L
L
O
C
A
T
E
(

w
o
r
k

)

!
n
e
c
e
s
s
a
r
y

E
N
D

S
U
B
R
O
U
T
I
N
E

s
w
a
p

T
he autom

atic arrays a and b are static variables, the program
 allocates the required storage w

hen sw
ap

is called, and deallocates the storage on exiting the procedure. T
he storage allocated to the allocatable

array w
ork m

ust be explicitly deallocated to prevent a m
em

ory leak.

M
em

ory leaks are cum
ulative, repeated use of a procedure w

hich contains a m
em

ory leak w
ill increase

the size of the allocated, but unusable, m
em

ory. M
em

ory leaks can be difficult errors to detect but m
ay

be avoided by rem
em

bering to allocate and deallocate storage in the sam
e procedure.

10.3 E
xercises

1.
W

rite a declaration statem
ent for each of the follow

ing allocatable arrays:

(a) R
ank 1 integer array.

(b) A
 real array of rank 4.

(c) T
w

o integer arrays one of rank 2 the other of rank 3.

(d) A
 rank one real array w

ith low
er and upper bound of -n and n respectively.

2.
W

rite allocation statem
ents for the arrays declared in question 1, so that

(a) T
he array in 1 (a) has 2000 elem

ents

(b) T
he array in 1 (b) has 16 elem

ents in total.

(c) In 1 (c) the rank tw
o array has 10 by 10 elem

ents, each index starting at elem
ent 0; and the ran k

three array has 5 by 5 by 10 elem
ents, each index starting at elem

ent -5.

(d) T
he array in 1 (d) is allocated as required.

3.
W

rite deallocation statem
ent(s) for the arrays allocated in 2.

4.
W

rite a program
 to calculate the m

ean and the variance of a variable am
ount of data. T

he num
ber

of values to be read into a real, dynam
ic array x is n. T

he program
 should use a subroutine to

calculate the m
ean and variance of the data held in x. T

he m
ean and variance are given by:

5.
W

rite a m
odule called tm

p_space to handle the allocation and deallocation of an allocatable w
ork

array called tm
p. T

he m
odule should contain tw

o subroutines, the first (m
ake_tm

p) to deal w
ith

allocation, the second (unm
ake_tm

p) to deal w
ith deallocation. T

hese subroutines should check the
status of tm

p and report any error encountered. W
rite a program

 that tests this m
odule.

T
he idea behind such a m

odule is that once developed it m
ay be used in other program

s w
hich

require a tem
porary w

ork array.

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

11 P
ointer V

ariables

11.1 W
hat are P

ointers?

A
 pointer variable, or sim

ply a pointer, is a new
 type of variable w

hich m
ay reference the data stored by

other variables (called targets) or areas of dynam
ically allocated m

em
ory.

P
ointers are a new

 feature to the F
ortran standard and bring F

ortran 90 into line w
ith languages like C

.
T

he use of pointers can provide:

A
 flexible alternative to allocatable arrays.

T
he tools to create and m

anipulate dynam
ic data structures (such as linked lists).

P
ointers are an advanced feature of any language. T

heir use allow
s program

m
ers to im

plem
ent pow

erful
algorithm

s and tailor the storage requirem
ents exactly to the size of the problem

 in hand.

11.1.1 P
ointers and targets

P
ointers are best thought of as variables w

hich are dynam
ically associated w

ith (or aliased to) som
e

target data. P
ointers are said to ‘point to’ their targets and valid targets include:

V
ariables of the sam

e data type as the pointer and explicitly declared w
ith the T

A
R

G
E

T
 attribute.

O
ther pointers of the sam

e data type.

D
ynam

ic m
em

ory allocated to the pointer.

P
ointers m

ay take advantage of dynam
ic storage but do not require the A

L
L

O
C

A
T

A
B

L
E

 attribute. T
he

ability to allocate and deallocate storage is an inherent property of pointer variables.

11.2 Specifications

T
he general form

 for pointer and target declaration statem
ents are:

t
y
p
e
,

P
O
I
N
T
E
R

[
,
a
t
t
r
]

:
:

v
a
r
i
a
b
l
e

l
i
s
t

t
y
p
e
,

T
A
R
G
E
T

[
,
a
t
t
r
]

:
:

v
a
r
i
a
b
l
e

l
i
s
t

W
here:type is the type of data object w

hich m
ay be pointed to and m

ay be a derived data type as w
ell as

intrinsic types.

attribute is a list of other attributes of the pointer.

A
 pointer m

ust have the sam
e data type and rank as its target. F

or array pointers the declaration
statem

ent m
ust specify the rank but not the shape (i.e. the bounds or extend of the array). In this respect

array pointers are sim
ilar to allocatable arrays.

F
or exam

ple, the follow
ing three pairs of statem

ents, all declare pointers and one or m
ore variables

w
hich m

ay be targets:

R
E
A
L
,

P
O
I
N
T
E
R

:
:

p
t
1

R
E
A
L
,

T
A
R
G
E
T

:
:

a
,

b
,

c
,

d
,

e

I
N
T
E
G
E
R
,

T
A
R
G
E
T

:
:

a
(
3
)
,

b
(
6
)
,

c
(
9
)

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
:
)
,

P
O
I
N
T
E
R

:
:

p
t
2

I
N
T
E
G
E
R
,

P
O
I
N
T
E
R

:
:

p
t
3
(
:
,
:
)

I
N
T
E
G
E
R
,

T
A
R
G
E
T

:
:

b
(
:
,
:
)

N
ote that the follow

ing is an exam
ples of an illegal pointer declaration:

R
E
A
L
,

P
O
I
N
T
E
R
,

D
I
M
E
N
S
I
O
N
(
1
0
)

:
:

p
t

!
i
l
l
e
g
a
l

T
he P

O
IN

T
E

R
 attribute is incom

patible w
ith the A

L
L

O
C

A
T

A
B

L
E

, E
X

T
E

R
N

A
L

, IN
T

E
N

T
,

IN
T

R
IN

S
IC

, P
A

R
A

M
E

T
E

R
 and T

A
R

G
E

T
 attributes. T

he T
A

R
G

E
T

 attribute is incom
patible w

ith the
E

X
T

E
R

N
A

L
, IN

T
R

IN
S

IC
, P

A
R

A
M

E
T

E
R

 and P
O

IN
T

E
R

 attributes.

11.3 P
ointer assignm

ent

T
here are tw

o operators w
hich m

ay act on pointers:

T
he pointer assignm

ent operator (=
>

)

T
he assignm

ent operator (=
)

T
o associate a pointer w

ith a target use the pointer assignm
ent operator (=

>
):

p
o
i
n
t
e
r

=
>

t
a
r
g
e
t

W
here pointer is a pointer variable and target is any valid target. pointer m

ay now
 be used as an alias to

the data stored by target. T
he pointer assignm

ent operator also allocates storage required by the pointer.

T
o change the value of a pointer’s target (just like changing the value of a variable) use the usual

assignm
ent operator (=

). T
his is just as it w

ould be for other variable assignm
ent w

ith a pointer used as
an alias to another variable.

T
he follow

ing are exam
ples of pointer assignm

ent:

I
N
T
E
G
E
R
,

P
O
I
N
T
E
R

:
:

p
t

I
N
T
E
G
E
R
,

T
A
R
G
E
T

:
:

x
=
3
4
,

y
=
0

.
.
.

p
t

=
>

x

!

p
t

p
o
i
n
t
s

t
o

x

y

=

p
t

!

y

e
q
u
a
l
s

x

p
t

=
>

y

!

p
t

p
o
i
n
t
s

t
o

y

p
t

=

1
7

!

y

e
q
u
a
l
s

1
7

T
he declaration statem

ents specify a three variables, pt is an integer pointer, w
hile x and y are possible

pointer targets. T
he first executable statem

ent associates a target w
ith pt. T

he second executable
statem

ent changes the value of y to be the sam
e as pt’s target, this w

ould only be allow
ed w

hen pt has an
associated target. T

he third executable statem
ent re-assigns the pointer to another target. F

inally, the
fourth executable statem

ent assigns a new
 value, 17, to pt’s target (not pt itself!). T

he effect of the above
statem

ents is illustrated below
.

It is possible to assign a target to a pointer by using another pointer. F
or exam

ple:

R
E
A
L
,

P
O
I
N
T
E
R

:
:

p
t
1
,

p
t
2

.
.
.

p
t
2

=
>

p
t
1

!
l
e
g
a
l

o
n
l
y

i
f

p
t
1

h
a
s

a
n

a
s
s
o
c
i
a
t
e
d

t
a
r
g
e
t

A
lthough this m

ay appear to be a pointer pointing to another pointer, pt2 does not point to pt1 itself but
to pt1’s target. It is w

rong to think of ‘chains of pointers’, one pointing to another. Instead all pointers
becom

e associated w
ith the sam

e target.

B
ew

are, of using the follow
ing statem

ents, they are both illegal:

p
t
1

=
>

1
7

!
c
o
n
s
t
a
n
t

e
x
p
r
e
s
s
i
o
n

i
s

n
o
t

v
a
l
i
d

t
a
r
g
e
t

p
t
2

=
>

p
t
1

+

3

!
a
r
i
t
h
m
e
t
i
c

e
x
p
r
e
s
s
i
o
n

i
s

n
o
t

v
a
l
i
d

t
a
r
g
e
t

11.3.1 D
ereferencing

W
here a pointer appears as an alias to a variable it is autom

atically dereferenced; that is the value of the
target is used rather than the pointer itself. F

or a pointer to be dereferenced in this w
ay requires that it be

associated w
ith a target.

P
ointer are autom

atically dereferenced w
hen they appear:

A
s part of an expression.

In I/O
 statem

ents.

F
or exam

ple:

p
t

=
>

a

b

=

p
t

!
b

e
q
u
a
l
s

a
,

p
t

i
s

d
e
r
e
f
e
r
e
n
c
e
d

I
F
(

p
t
<
0

)

p
t
=
0

!
p
t

d
e
r
e
f
e
r
e
n
c
e
d

t
w
i
c
e

W
R
I
T
E
(
6
,
*
)

p
t

!
p
t
’
s

t
a
r
g
e
t

i
s

w
r
i
t
t
e
n

R
E
A
D
(
5
,
*
)

p
t

!
v
a
l
u
e

s
t
o
r
e
d

b
y

p
t
’
s

t
a
r
g
e
t

11.4 P
ointer association status

P
ointers m

ay be in one of three possible states:

A
ssociated - w

hen pointing to a valid target.

D
isassociated - the result of a N

U
L

L
IF

Y
 statem

ent.

U
ndefined - the initial state on declaration.

A
 pointer m

ay becom
e disassociated through the N

U
L

L
IF

Y
 statem

ent:

N
U
L
L
I
F
Y
(

l
i
s
t

o
f

p
o
i
n
t
e
r
s

)

A
 pointer that has been nullified m

ay be thought of as pointing ‘at nothing’.

T
he status of a pointer m

ay be found using the intrinsic function:

A
S
S
O
C
I
A
T
E
D

(

l
i
s
t

o
f

p
o
i
n
t
e
r
s

[
,
T
A
R
G
E
T
]

)

T
he value returned by A

S
S

O
C

IA
T

E
D

 is either .T
R

U
E

. or .F
A

L
S

E
. W

hen T
A

R
G

E
T

 is absent,
A

S
S

O
C

IA
T

E
D

 returns a value .T
R

U
E

. if the pointer is associated w
ith a target and .F

A
L

S
E

. if the
pointer has been nullified. W

hen T
A

R
G

E
T

 is present A
S

S
O

C
IA

T
E

D
 reports on w

hether the pointer
points to the target in question. A

S
S

O
C

IA
T

E
D

 returns a value .T
R

U
E

. if the pointer is associated w
ith

T
A

R
G

E
T

 and .F
A

L
S

E
. if the pointer points to another target or has been nullified.

It is an error to test the status of an undefined pointer, therefore it is good practice to nullify all pointers
that are not im

m
ediately associated w

ith a target after declaration.

T
he follow

ing exam
ple show

s the use of the A
S

S
O

C
IA

T
E

D
 function and the N

U
L

L
IF

Y
 statem

ent:

R
E
A
L
,

P
O
I
N
T
E
R

:
:

p
t
1
,

p
t
2

!
u
n
d
e
f
i
n
e
d

s
t
a
t
u
s

R
E
A
L
,

T
A
R
G
E
T

:
;

t
1
,

t
2

L
O
G
I
C
A
L

:
:

t
e
s
t

p
t
1

=
>

t
1

!
p
t
1

a
s
s
o
c
i
a
t
e
d

p
t
2

=
>

t
2

!
p
t
2

a
s
s
o
c
i
a
t
e
d

t
e
s
t

=

A
S
S
O
C
I
A
T
E
D
(

p
t
1

)

!

.
T
.

t
e
s
t

=

A
S
S
O
C
I
A
T
E
D
(

p
t
2

)

!

.
T
.

.
.
.

N
U
L
L
I
F
Y
(

p
t
1

)

!
p
t
1

d
i
s
a
s
s
o
c
i
a
t
e
d

t
e
s
t

=

A
S
S
O
C
I
A
T
E
D
(

p
t
1

)

!

.
F
.

t
e
s
t

=

A
S
S
O
C
I
A
T
E
D
(

p
t
1
,

p
t
2

)

!

.
F
.

t
e
s
t

=

A
S
S
O
C
I
A
T
E
D
(

p
t
2
,

T
A
R
G
E
T
=
t
2
)

!

.
T
.

t
e
s
t

=

A
S
S
O
C
I
A
T
E
D
(

p
t
2
,

T
A
R
G
E
T
=
t
1
)

!

.
F
.

N
U
L
L
I
F
Y
(

p
t
1
,

p
t
2
)

!
d
i
s
a
s
s
o
c
i
a
t
e
d

T
he initial undefined status of the pointers is changed to associated by pointer assignm

ent, there-after
the A

S
S

O
C

IA
T

E
D

 function returns a value of .T
R

U
E

. for both pointers. P
ointer pt1 is then nullified and

its status tested again, note that m
ore than one pointer status m

ay be tested at once. T
he association

status of pt2 w
ith respect to a target is also tested. F

inally both pointers are nullified in the sam
e (last)

statem
ent.

11.5 D
ynam

ic storage

A
s w

ell as pointing to existing variables w
hich have the T

A
R

G
E

T
 attribute, pointers m

ay be associated
w

ith blocks of dynam
ic m

em
ory. T

his m
em

ory is allocated through the A
L

L
O

C
A

T
E

 statem
ent w

hich
creates an un-nam

ed variable or array of the specified size, and w
ith the data type, rank, etc. of the

pointer:

R
E
A
L
,

P
O
I
N
T
E
R

:
:

p
,

p
a
(
:
)

I
N
T
E
G
E
R

:
:

n
=
1
0
0

.
.
.

A
L
L
O
C
A
T
E
(

p
,

p
a
(
n
)

)

.
.
.

D
E
A
L
L
O
C
A
T
E
(

p
,

p
a

)

In the above exam
ple p points to an area of dynam

ic m
em

ory and can hold a single, real num
ber and pa

points to a block of dynam
ic m

em
ory large enough to store 100 real num

bers. W
hen the m

em
ory is no

longer required it m
ay be deallocated using the D

E
A

L
L

O
C

A
T

E
 statem

ent. In this respect pointers
behave very m

uch like allocatable arrays.

11.5.1 C
om

m
on errors

A
llocating storage to pointers can provide a great degree of flexibility w

hen program
m

ing, how
ever care

m
ust be taken to avoid certain program

m
ing errors:

M
em

ory leaks can arise from
 allocating dynam

ic storage to the pointer and then re-assigning the
pointer to another target:

I
N
T
E
G
E
R
,

P
O
I
N
T
E
R

:
:

p
t
(
:
)

.
.
.

A
L
L
O
C
A
T
E
(

p
t
(
2
5
)

)

N
U
L
L
I
F
Y
(

p
t

)

!
w
r
o
n
g

S
ince the pointer is the only w

ay to reference the allocated storage (i.e. the allocated storage has no
associated variable nam

e other than the pointer) reassigning the pointer m
eans the allocated storage can

no longer be released. T
herefore all allocated storage should be deallocated before m

odifying the pointer
to it.

It is possible to assign a pointer to a target, but then rem
ove the target (by deallocating it or exiting

a procedure to w
hich it is local), in that case the pointer m

ay be left ‘dangling’:

R
E
A
L
,

P
O
I
N
T
E
R

:
:

p
1
,

p
2

.
.
.

A
L
L
O
C
A
T
E
(

p
1

)

p
2

=
>

p
1

D
E
A
L
L
O
C
A
T
E
(

p
1

)

!
w
r
o
n
g

In the above exam
ple p2 points to the storage allocated to p1, how

ever w
hen that storage is deallocated

p2 no longer has a valid target and its state becom
es undefined. In this case dereferencing p2 w

ould
produce unpredictable results.

P
rogram

m
ing errors like the above can be avoided by m

aking sure that all pointers to a defunked target
are nullified.

11.6 A
rray pointers

P
ointers m

ay act as dynam
ic aliases to arrays and array sections, such pointers are called array pointers.

A
rray pointers can be useful w

hen a particular section is referenced frequently and can save copying
data. F

or exam
ple:

R
E
A
L
,

T
A
R
G
E
T

:
:

g
r
i
d
(
1
0
,
1
0
)

R
E
A
L
,

P
O
I
N
T
E
R

:
:

c
e
n
t
r
e
(
:
,
:
)
,

r
o
w
(
:
)

.
.
.

c
e
n
t
r
e

=
>

g
r
i
d
(
4
:
7
,
4
:
7
)

r
o
w

=
>

g
r
i
d
(
9
,
:
)

A
n array pointer can be associated w

ith the w
hole array or just a section. T

he size and extent of an array
pointer m

ay change as required, just as w
ith allocatable arrays. F

or exam
ple:

c
e
n
t
r
e

=
>

g
r
i
d
(
5
:
5
,
5
:
6
)

!
i
n
n
e
r

4

e
l
e
m
e
n
t
s

o
f

o
l
d

c
e
n
t
r
e

N
ote, an array pointer need not be deallocated before its extent or bounds are redefined.

I
N
T
E
G
E
R
,

T
A
R
G
E
T

:
:

l
i
s
t
(
-
5
:
5
)

I
N
T
E
G
E
R
,

P
O
I
N
T
E
R

:
:

p
t
(
:
)

I
N
T
E
G
E
R
,

D
I
M
E
N
S
I
O
N
(
3
)

:
:

v

=

(
/
-
1
,
4
,
-
2
/
)

.
.
.

p
t

=
>

l
i
s
t

!
n
o
t
e

b
o
u
n
d
s

o
f

p
t

p
t

=
>

l
i
s
t
(
:
)

!
n
o
t
e

b
o
u
n
d
s

o
f

p
t

p
t

=
>

l
i
s
t
(
1
:
5
:
2
)

p
t

=
>

l
i
s
t
(

v

)

!
i
l
l
e
g
a
l

T
he extent (or bounds) of an array section are determ

ined by the type of assignm
ent used to assign the

pointer. W
hen an array pointer is aliased w

ith an array the array pointer takes its extent form
 the target

array; as w
ith pt =

>
 list above, both have bounds -5:5. If the array pointer is aliased to an array section

(even if the section covers the w
hole array) its low

er bound in each dim
ension is 1; as w

ith pt =
>

 list(:)
above, pt’s extent is 1:11 w

hile list’s extent is -5:5. S
o pt(1) is aliased to list(-5), pt(2) to list(-4), etc.

It is possible to associate an array pointer w
ith an array section defined by a subscript triplet. It is not

possible to associate one w
ith an array section defined w

ith a vector subscript, v above. T
he pointer

assignm
ent pt =

>
 list(1:5:2) is legal w

ith pt(1) aliased to list(1), pt(2) aliased to list(3) and pt(3) aliased
to list(5).

11.7 D
erived data types

P
ointers m

ay be a com
ponent of a derived data type. T

hey can take the place of allocatables arrays
w

ithin a derived data type, or act as pointers to other objects, including other derived data types:

T
he dynam

ic nature of pointer arrays can provide varying am
ounts of storage for a derived data type:

T
Y
P
E

d
a
t
a

R
E
A
L
,

P
O
I
N
T
E
R

:
:

a
(
:
)

E
N
D

T
Y
P
E

d
a
t
a

T
Y
P
E
(

d
a
t
a

)

:
:

e
v
e
n
t
(
3
)

D
O

i
=
1
,
3

R
E
A
D
(
5
,
*
)

n

!
n

v
a
r
i
e
s

i
n

l
o
o
p

A
L
L
O
C
A
T
E
(

e
v
e
n
t
(
i
)
%
a
(
n
)

)

R
E
A
D
(
5
,
*
)

e
v
e
n
t
(
i
)
%
a

E
N
D

D
O

T
he num

ber of values differs for each event, the size of the array pointer depends on the input value n.
W

hen the data is no longer required the pointer arrays should be deallocated:

D
O

i
=
1
,
3

D
E
A
L
L
O
C
A
T
E
(

e
v
e
n
t
(
i
)
%
a

)

E
N
D

D
O

11.7.1 L
inked lists

P
ointers m

ay point to other m
em

bers of the sam
e data type, and in this w

ay create ‘linked lists’. F
or

exam
ple consider the follow

ing data type:

T
Y
P
E

n
o
d
e

R
E
A
L

:
:

i
t
e
m

T
Y
P
E
(

n
o
d
e

)
,

P
O
I
N
T
E
R

:
:

n
e
x
t

E
N
D

T
Y
P
E

n
o
d
e

T
he derived type node contains a single object item

 (the data in the list) and a pointer next to another
instance of node. N

ote the recursion-like property in the declaration allow
ing the pointer to reference its

ow
n data type.

L
inked lists are a very pow

erful program
m

ing concept, their dynam
ic nature m

eans that they m
ay grow

or shrink as required. C
are m

ust be taken to ensure pointers are set up and m
aintained correctly, the last

pointer in the list is usually nullified. D
etails of how

 to im
plem

ent, use and m
anipulate a linked list can

be found in som
e of the reading m

aterial associated w
ith these notes.

11.8 P
ointer argum

ents

Just like other data types, pointers m
ay be passed as argum

ents to procedures. T
here are how

ever a few
points to rem

em
ber w

hen using pointers as actual or dum
m

y argum
ents:

A
s w

ith other variables, actual and dum
m

y argum
ents m

ust have the sam
e data type and rank.

dum
m

y argum
ents that are pointer m

ay not have the IN
T

E
N

T
 attribute, since it w

ould be unclear
w

hether the intent w
ould refer to the pointer itself or the associated target.

P
ointer argum

ents to external procedures require IN
T

E
R

F
A

C
E

 blocks.

W
hen both the actual and dum

m
y argum

ents are pointers, the target (if there is one) and association
status is passed on call and again on return. It is im

portant to ensure that a target rem
ains valid w

hen
returning from

 a procedure (i.e. the target is not a local procedure variable), otherw
ise the pointer is left

‘dangling’.

W
hen the actual argum

ent is a pointer and the corresponding dum
m

y argum
ent is not, the pointer is

dereferenced and it is the target that is copied to the dum
m

y argum
ent. O

n return the target takes the
value of the dum

m
y argum

ent. T
his requires the actual argum

ent to be associated w
ith a target w

hen the
procedure is referenced.

F
or exam

ple:

P
R
O
G
R
A
M

p
r
o
g

I
N
T
E
R
F
A
C
E

!
n
e
e
d
e
d

f
o
r

e
x
t
e
r
n
a
l

s
u
b
r
o
u
t
i
n
e

S
U
B
R
O
T
I
N
E

s
u
b
a
(

a

)

R
E
A
L
,

P
O
I
N
T
E
R

:
:

a
(
:
)

E
N
D

S
U
B
R
O
U
T
I
N
E

s
u
b
a

E
N
D

I
N
T
E
R
F
A
C
E

R
E
A
L
,

P
O
I
N
T
E
R

:
:

p
t
(
:
)

R
E
A
L
,

T
A
R
G
E
T

:
:

d
a
t
a
(
1
0
0
)

.
.
.

p
t

=
>

d
a
t
a

C
A
L
L

s
u
b
a
(

p
t

)

C
A
L
L

s
u
b
b
(

p
t

)

.
.
.

C
O
N
T
A
I
N
S

S
U
B
R
O
U
T
I
N
E

s
u
b
b
(

b

)

!
i
n
t
e
r
n
a
l

R
E
A
L
,

D
I
M
E
N
S
I
O
N
(
:
)

:
:

b

!
a
s
s
u
m
e
d

s
h
a
p
e

o
f

1
0
0

.
.
.

E
N
D

S
U
B
R
O
U
T
I
N
E

s
u
b
b

E
N
D

P
R
O
G
R
A
M

p
r
o
g

S
U
B
R
O
U
T
I
N
E

s
u
b
a
(

a

)

!
e
x
t
e
r
n
a
l

s
u
b
r
o
u
t
i
n
e

R
E
A
L
,

P
O
I
N
T
E
R

:
:

a
(
:
)

!
a

p
o
i
n
t
s

t
o

d
a
t
a

.
.
.

E
N
D

S
U
B
R
O
U
T
I
N
E

s
u
b
a

It is not possible for a non-pointer actual argum
ent to correspond w

ith a pointer dum
m

y argum
ent.

11.9 P
ointer functions

F
unctions m

ay return pointers as their result. T
his is m

ost useful w
here the size of the result depends on

the function’s calculation. N
ote that:

T
he result m

ust have the P
O

IN
T

E
R

 attribute.

T
he returning function m

ust have a valid target or have been nullified.

P
ointer results from

 external procedures require IN
T

E
R

F
A

C
E

 blocks.

F
or exam

ple:

I
N
T
E
R
F
A
C
E

F
U
N
C
T
I
O
N

m
a
x
_
r
o
w

(

a

)

R
E
A
l
,

T
A
R
G
E
T

:
:

a
(
:
,
:
)

R
E
A
L
,

P
O
I
N
T
E
R

:
:

m
a
x
_
r
o
w
(
:
)

E
N
D

F
U
N
C
T
I
O
N

m
a
x
_
r
o
w

E
N
D

I
N
T
E
R
F
A
C
E

R
E
A
L
,

T
A
R
G
E
T

:
:

a
(
3
,
3
)

R
E
A
L
,

P
O
I
N
T
E
R

:
:

p
(
:
)

.
.
.

p

=
>

m
a
x
_
r
o
w

(

a

)

.
.
.

F
U
N
C
T
I
O
N

m
a
x
_
r
o
w

(

a

)

!
e
x
t
e
r
n
a
l

R
E
A
L
,

T
A
R
G
E
T

:
:

a
(
:
,
:
)

R
E
A
L
,

P
O
I
N
T
E
R

:
:

m
a
x
_
r
o
w
(
:
)

!
f
u
n
c
t
i
o
n

r
e
s
u
l
t

I
N
T
E
G
E
R

:
:

l
o
c
a
t
i
o
n
(
2
)

l
o
c
a
t
i
o
n

=

M
A
X
L
O
C
(

a

)

!
r
o
w

a
n
d

c
o
l
u
m
n

o
f

m
a
x

v
a
l
u
e

m
a
x
_
r
o
w

=
>

a
(
l
o
c
a
t
i
o
n
(
1
)
,
:
)

!
p
o
i
n
t
e
r

t
o

m
a
x

r
o
w

E
N
D

F
U
N
C
T
I
O
N

m
a
x
_
r
o
w

H
ere the external function m

ax_row
 returns the row

 of a m
atrix containing the largest value. T

he pointer
result is only allow

ed to point to the dum
m

y argum
ent a because it is declared as a target, (otherw

ise it
w

ould have been a local array and left the pointer dangling on return). N
otice the function result is used

on the right hand side of a pointer assignm
ent statem

ent. A
 pointer result m

ay be used as part of an
expression in w

hich case it m
ust be associated w

ith a target.

11.10 E
xercises

1.
W

rite a declaration statem
ent for each of the follow

ing pointers and their targets:

(a) A
 pointer to a single elem

ent of an array of 20 integers.

(b) A
 pointer to a character string of length 10.

(c) A
n array pointer to a row

 of a 10 by 20 elem
ent real array.

(d) A
 derived data type holding a real num

ber three pointers to neighbouring nodes, left, right and
up (this kind of derived data structure m

ay be used to represent a binary tree).

2.
F

or the pointer and target in the follow
ing declarations w

rite an expression to associate the pointer
w

ith:

(a) T
he first row

 of the target.

(b) A
 loop w

hich associates the pointer w
ith each colum

n of the target in turn.

R
E
A
L
,

P
O
I
N
T
E
R

:
:

p
t
(
:
)

R
E
A
L
,

T
A
R
G
E
T
,

D
I
M
E
N
S
I
O
N
(
-
1
0
:
1
0
,

-
1
0
:
1
0
)

:
:

a

3.
W

rite a program
 containing an integer pointer and tw

o targets. N
ullify and report the initial status

of the pointer (using the A
S

S
O

C
IA

T
E

D
 intrinsic function). T

hen associate the pointer w
ith each

of the targets in turn and output their values to the screen. F
inally ensure the pointer ends w

ith the
status ‘not currently associated’.

4.
W

rite a program
 containing a derived data type. T

he data type represents different experim
ents

and should hold the num
ber of reading taken in an experim

ent (an integer) and values for each of
the readings (real array pointer).

R
ead in the num

ber and values for a set of experim
ental readings, say 4, and output their m

ean.
D

eallocate all pointers before the program
 finishes.

5.
W

rite an internal function that takes a single rank one, integer array as an argum
ent and returns an

array pointer to all elem
ents w

ith non-zero values as a result. T
he function w

ill need to count the
num

ber of zero’s in the array (use the C
O

U
N

T
 intrinsic), allocate the required storage and copy

each non-zero value into that storage. W
rite a program

 to test the function.

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

A
ppendix A

: Intrinsic procedures

F
ortran 90 offers m

any intrinsic function and subroutines, the follow
ing lists provide a quick reference

to their form
at and use.

In the follow
ing intrinsic function definitions argum

ents are usually nam
ed according to their types (I

for integer C
 for character, etc.), including those detained below

. O
ptional argum

ents are show
n in

square brackets [], and keyw
ords for the argum

ent nam
es are those given.

K
IN

D
 - describes the K

IN
D

 num
ber.

S
E

T
 - a string containing a set of characters.

B
A

C
K

 - a logical used to determ
ine the direction a string is to be searched.

M
A

S
K

 - a logical array used to identfy those elem
ent w

hich are to take part in the desired operation.

D
IM

 - a selected dim
ension of an argum

ent (an integer).

A
.1 A

rgum
ent presence enquiry

P
R

E
S

E
N

T
(A

) - true if A
 is present.

A
.2 N

um
eric functions

A
B

S
(A

) - return the absolute value of A
.

A
IM

A
G

(Z
) - return the im

aginary part of com
plex num

ber Z
.

A
IN

T
(A

 [, K
IN

D
]) - returns a value A

 truncated to a w
hole num

ber.

A
N

IN
T

(A
 [, K

IN
D

]) - returns a value rounded to the nearest value of A
.

C
E

IL
IN

G
(A

) - returns the low
est integer greater than or equal to A

.

C
M

P
L

X
(X

 [, Y
][, K

IN
D

]) - converts A
 to a com

plex num
ber.

C
O

N
JG

(Z
) - returns the conjugate of a com

plex num
ber.

D
B

L
E

(A
) - converts A

 to a double precision real.

D
IM

(X
, Y

) - returns the m
axim

um
 of X

-Y
 or 0.

D
P

R
O

D
(X

, Y
) - returns a double precision product.

F
L

O
O

R
(A

) - returns the largest integer less than or equal to A
.

IN
T

(A
 [, K

IN
D

]) - converts to an integer.

M
A

X
(A

1, A
2 [, A

3...]) - returns the m
axim

um
 value.

M
IN

(A
1, A

2 [, A
3...]) - returns the m

inim
um

 value.

M
O

D
(A

, P
) - returns rem

ainder m
odulo P

 i.e. A
-IN

T
(A

/P
)*P

.

M
O

D
U

L
O

(A
, P

) - A
 m

odulo P
.

N
IN

T
(A

 [, K
IN

D
]) - returns the nearest integer to A

.

R
E

A
L

(A
 [, K

IN
D

]) - converts to a real.

S
IG

N
(A

, B
) - returns the absolute value of A

 tim
es the sign of B

.

A
.3 M

athem
atical functions

A
C

O
S

(X
) - arccosine.

A
S

IN
(X

) - arcsine.

A
T

A
N

(X
) - arctan.

A
T

A
N

2(X
, Y

) - arctan.

C
O

S
(X

) - cosine.

C
O

S
H

(X
) - hyperbolic cosine.

E
X

P
(X

) - exponential.

L
O

G
(X

) - natural logarithm
.

L
O

G
10(X

) - base 10 logarithm
.

S
IN

(X
) - sine.

S
IN

H
(X

) - hyperbolic sine.

S
Q

R
T

(X
) - square root.

T
A

N
(X

) - tan.

T
A

N
H

(X
) - hyperbolic tan.

A
.4 C

haracter functions

A
C

H
A

R
(I) - returns the Ith character in the A

S
C

II collating sequence.

A
D

JU
S

T
L

(S
T

R
IN

G
) - adjusts string left by rem

oving any leading blanks and inserting trailing blanks.

A
D

JU
S

T
R

(S
T

R
IN

G
) - adjusts string right by rem

oving trailing blanks and inserting leading blanks.

C
H

A
R

(I [, K
IN

D
]) - returns the Ith character in the m

achine specific collating sequence.

IA
C

H
A

R
(C

) - returns the position of the character in the A
S

C
II collating sequence.

IC
H

A
R

(C
) - returns the position of the character in the m

achine specific collating sequence.

IN
D

E
X

(S
T

R
IN

G
, S

U
B

S
T

R
IN

G
 [, B

A
C

K
]) - returns the leftm

ost (rightm
ost if B

A
C

K
 is .T

R
U

E
.)

starting position of S
U

B
S

T
R

IN
G

 w
ithin S

T
R

IN
G

.

L
E

N
(S

T
R

IN
G

) - returns the length of a string.

L
E

N
_T

R
IM

(S
T

R
IN

G
) - returns the length of a string w

ithout trailing blanks.

L
G

E
(S

T
R

IN
G

_A
, S

T
R

IN
G

_B
) - lexically greater than or equal to.

L
G

T
(S

T
R

IN
_A

1, S
T

R
IN

G
_B

) - lexically greater than.

L
L

E
(S

T
R

IN
G

_A
, S

T
R

IN
G

_B
) - lexically less than or equal to.

L
L

T
(S

T
R

IN
G

_A
, S

T
R

IN
G

_B
) - lexically less than.

R
E

P
E

A
T

(S
T

R
IN

G
, N

C
O

P
IE

S
) - repeats concatenation.

S
C

A
N

(S
T

R
IN

G
, S

E
T

 [, B
A

C
K

]) - returns the index of the leftm
ost (rightm

ost if B
A

C
K

 is .T
R

U
E

.)
character of S

T
R

IN
G

 that belong to S
E

T
, or 0 if none belong.

T
R

IM
(S

T
R

IN
G

) - rem
oves training spaces from

 a string.

V
E

R
IF

Y
(S

T
R

IN
G

, S
E

T
 [, B

A
C

K
]) - returns zero if all characters in S

T
R

IN
G

 belong to S
E

T
 or the

index of the leftm
ost (rightm

ost if B
A

C
K

 is .T
R

U
E

.) that does not.

A
.5 K

IN
D

 functions

K
IN

D
(X

) - returns the kind type param
eter value.

S
E

L
E

C
T

E
D

_IN
T

_K
IN

D
(R

) - kind of type param
eter for specified exponent range.

S
E

L
E

C
T

E
D

_R
E

A
L

_K
IN

D
([P

] [,R
]) - kind of type param

eter for specified precision and exponent
range.

A
.6 L

ogical functions

L
O

G
IC

A
L

(L
 [, K

IN
D

]) - convert betw
een different logical kinds.

A
.7 N

um
eric enquiry functions

D
IG

IT
S

(X
) - returns the num

ber of significant digits in the m
odel.

E
P

S
IL

O
N

(X
) - returns the sm

allest value such that R
E

A
L

(1.0, K
IN

D
(X

)) +
 E

P
S

IL
O

N
(X

) is not equal
to R

E
A

L
(1.0, K

IN
D

(X
)).

H
U

G
E

(X
) - returns the largest num

ber in the m
odel.

M
A

X
E

X
P

O
N

E
N

T
(X

) - returns the m
axim

um
 exponent value in the m

odel.

M
IN

E
X

P
O

N
E

N
T

(X
) - returns the m

inim
um

 exponent value in the m
odel.

P
R

E
C

IS
IO

N
(X

) - returns the decim
al precision.

R
A

D
IX

(X
) - returns the base of the m

odel.

R
A

N
G

E
(X

) - returns the decim
al exponent range.

T
IN

Y
(X

) - returns the sm
allest positive num

ber in the m
odel.

A
.8 B

it enquiry functions

B
IT

_S
IZ

E
(I) - returns the num

ber of bits in the m
odel.

A
.9 B

it m
anipulation functions

B
T

E
S

T
(I, P

O
S

) - is .T
R

U
E

. if bit P
O

S
 of integer I has a value 1.

IA
N

D
(I, J) - logical .A

N
D

. on the bits of integers I and J.

IB
C

L
R

(I, P
O

S
) - clears bit P

O
S

 of interger I to 0.

IB
IT

S
(I, P

O
S

, L
E

N
) - extracts a sequence of bits length L

E
N

 from
 integer I starting at P

O
S

IB
S

E
T

(I, P
O

S
) - sets bit P

O
S

 of integer I to 1.

IE
O

R
(I, J) - perform

as an exclusive .O
R

. on the bits of integers I and J.

IO
R

(I, J) - perform
es an inclusive .O

R
. on the bits of integers I and J.

IS
H

IF
T

(I, S
H

IF
T

) - logical shift of the bits.

IS
H

IF
T

C
(I, S

H
IF

T
 [, S

IZ
E

]) - logical circular shift on a set of bits on the right.

N
O

T
(I) - logical com

plem
ent on the bits.

A
.10 T

ransfer functions

T
R

A
N

S
F

E
R

(S
O

U
R

C
E

, M
O

L
D

 [, S
IZ

E
]) - converts S

O
U

R
C

E
 to the type of M

O
L

D
.

A
.11 F

loating point m
anipulation functions

E
X

P
O

N
E

N
T

(X
) - returns the exponent part of X

.

F
R

A
C

T
IO

N
(X

) - returns the fractional part of X
.

N
E

A
R

E
S

T
(X

, S
) - returns the nearest different m

achine specific num
ber in the direction given by the

sign of S
.

R
R

S
P

A
C

IN
G

(X
) - returns the reciprocal of the relative spacing of m

odel num
bers near X

.

S
C

A
L

E
(X

) - m
ultiple X

 by its base to pow
er I.

S
E

T
_E

X
P

O
N

E
N

T
(X

, I) - sets the expontnt part of X
 to be I.

S
P

A
C

IN
G

(X
) - returns the absolute spacing of m

odel num
bers near X

.

A
.12 V

ector and m
atrix functions

D
O

T
_P

R
O

D
U

C
T

(V
E

C
T

O
R

_A
, V

E
C

T
O

R
_B

) - returns the dot product of tw
o vectors (rank one

arrays).

M
A

T
M

U
L

(M
A

T
R

IX
_A

, M
A

T
R

IX
_B

) - returns the product of tw
o m

atricies.

A
.13 A

rray reduction functions

A
L

L
(M

A
S

K
 [, D

IM
]) - returns .T

R
U

E
. if all elem

ents of M
A

S
K

 are .T
R

U
E

.

A
N

Y
(M

A
S

K
 [, D

IM
]) - returns .T

R
U

E
. if any elem

ents of M
A

S
K

 are .T
R

U
E

.

C
O

U
N

T
(M

A
S

K
 [, D

IM
]) - returns the num

ber of elem
ents of M

A
S

K
 that are .T

R
U

E
.

M
A

X
V

A
L

(A
R

R
A

Y
 [, D

IM
] [,M

A
S

K
]) - returns the value of the m

axim
um

 array elem
ent.

M
IN

V
A

L
(A

R
R

A
Y

 [, D
IM

] [,M
A

S
K

]) - returns the value of the m
inim

um
 array elem

ent.

P
R

O
D

U
C

T
(A

R
R

A
Y

 [, D
IM

] [, M
A

S
K

]) - returns the product of array elem
ents

S
U

M
(A

R
R

A
Y

 [, D
IM

] [, M
A

S
K

]) - returns the sum
 of array elem

ents.

A
.14 A

rray enquiry functions

A
L

L
O

C
A

T
E

D
(A

R
R

A
Y

) - returns .T
R

U
E

. if A
R

R
A

Y
 is allocated.

L
B

O
U

N
D

(A
R

R
A

Y
 [, D

IM
]) - returns the low

er bounds of the array.

S
H

A
P

E
(S

O
U

R
C

E
) - returns the array (or scalar) shape.

S
IZ

E
(A

R
R

A
Y

 [, D
IM

]) - returns the total num
ber of elem

ents in an array.

U
B

O
U

N
D

(A
R

R
A

Y
 [, D

IM
]) - returns the upper bounds of the array.

A
.15 A

rray constructor functions

M
E

R
G

E
(T

S
O

U
R

C
E

, F
S

O
U

R
C

E
, M

A
S

K
) - returns value(s) of T

S
O

U
R

C
E

 w
hen M

A
S

K
 is .T

R
U

E
.

and F
S

O
U

R
C

E
 otherw

ise.

P
A

C
K

(A
R

R
A

Y
, M

A
S

K
 [, V

E
C

T
O

R
]) - pack elem

ents of A
R

R
A

Y
 corresponding to true elem

ents of
M

A
S

K
 into a rank one result

S
P

R
E

A
D

(S
O

U
R

C
E

, D
IM

, N
C

O
P

IE
S

) - returns an array of rank one greater than S
O

U
R

C
E

 containing
N

C
O

P
IE

S
 of S

O
U

R
C

E
.

U
N

P
A

C
K

(V
E

C
T

O
R

, M
A

S
K

, F
IE

L
D

) - unpack elem
ents of V

E
C

T
O

R
 corresponding to true elem

ents
of M

A
S

K
.

A
.16 A

rray reshape and m
anipulation functions

C
S

H
IF

T
(A

R
R

A
Y

, S
H

IF
T

 [, D
IM

]) - perform
s a circular shift.

E
O

S
H

IF
T

(A
R

R
A

Y
, S

H
IF

T
 [, B

O
U

N
D

A
R

Y
] [, D

IM
]) - perform

s an end-off shift.

M
A

X
L

O
C

(A
R

R
A

Y
 [, M

A
S

K
]) - returns the location of the m

axim
um

 elem
ent.

M
IN

L
O

C
(A

R
R

A
Y

 [, M
A

S
K

]) - returns the location of the m
inim

um
 elem

ent.

R
E

S
H

A
P

E
(S

O
U

R
C

E
, S

H
A

P
E

 [, P
A

D
] [, O

R
D

E
R

]) - rehapes S
O

U
R

C
E

 to shape S
H

A
P

E

T
R

A
N

S
P

O
S

E
(M

A
T

R
IX

) - transpose a m
atrix (rank tw

o array).

A
.17 P

ointer association status enquiry functions

A
S

S
O

C
IA

T
E

D
(P

O
IN

T
E

R
 [, T

A
R

G
E

T
]) - returns .T

R
U

E
. if P

O
IN

T
E

R
 is associated.

A
.18 Intrinsic subroutines

D
A

T
E

_A
N

D
_T

IM
E

([D
A

T
E

] [, T
IM

E
] [, Z

O
N

E
] [, V

A
L

U
E

S
]) - real tim

e clock reading date and tim
e.

M
V

B
IT

S
(F

R
O

M
, F

R
O

M
P

O
S

, L
E

N
, T

O
 T

O
P

O
S

) - copy bits.

R
A

N
D

O
M

_N
U

M
B

E
R

(H
A

R
V

E
S

T
) - random

 num
ber in the range 0-1 (inclusive).

R
A

N
D

O
M

_S
E

E
D

([S
IZ

E
] [, P

U
T

] [, G
E

T
]) - initialise or reset the random

 num
ber generator.

S
Y

S
T

E
M

_C
L

O
C

K
([C

O
U

N
T

] [, C
O

U
N

T
_R

A
T

E
] [, C

O
U

N
T

_M
A

X
]) - integer data from

 the real tim
e

clock.

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

T
he Q

ueen’s U
niversity of B

elfast

P
arallel C

om
puter C

entre

[N
ext] [P

revious] [T
op]

A
ppendix B

: F
urther reading

F
ortran 90 handbook - J.C

. A
dam

s et. al., M
cG

raw
-H

ill, 1992.

P
rogram

m
er’s G

uide to F
ortran 90 - W

.S
. B

rainerd et. al., U
nicom

p, 1994.

F
ortran 90 - M

. C
ounihan, P

itm
an, 1991.

F
ortran 90 program

m
ing - T

.M
.R

. E
llis et. al., W

esley, 1994.

F
ortran 90 for S

cientists and E
ngineers - B

.D
. H

ahn, E
dw

ard A
rnold, 1994.

F
ortran 90 E

xplained - M
. M

etcalf and J. R
ied, O

xford U
niversity P

ress, 1992.

P
rogram

m
ing in F

ortran 90 - J.S
. M

organ and J.L
. S

chonfelder, A
lfred W

alker L
td, 1993.

P
rogram

m
ing in F

ortran 90 - I.M
. S

m
ith, W

iley.

[N
ext] [P

revious] [T
op]

A
ll docum

ents are the responsibility of, and copyright, ©
 their authors and do not represent the view

s of
T

he P
arallel C

om
puter C

entre, nor of T
he Q

ueen’s U
niversity of B

elfast.
M

aintained by A
lan R

ea, em
ail A

.R
ea@

qub.ac.uk
G

enerated w
ith C

E
R

N
 W

ebM
aker

